1. |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
|
2. |
de Koning HJ, van der Aalst CM, de Jong PA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med, 2020, 382(6): 503-513.
|
3. |
Lung Cancer Incidence and Mortality with Extended Follow-up in the National Lung Screening Trial. J Thorac Oncol, 2019, 14(10): 1732-1742.
|
4. |
Zhang Y, Fu F, Chen H. Management of ground-glass opacities in the lung cancer spectrum. Ann Thorac Surg, 2020, 110(6): 1796-1804.
|
5. |
Aokage K, Suzuki K, Saji H, et al. Segmentectomy for ground-glass-dominant lung cancer with a tumour diameter of 3 cm or less including ground-glass opacity (JCOG1211): A multicentre, single-arm, confirmatory, phase 3 trial. Lancet Respir Med, 2023, 11(6): 540-549.
|
6. |
Liu C, Yang Z, Li Y, et al. Intentional wedge resection versus segmentectomy for ≤2 cm ground-glass-opacity-dominant non-small cell lung cancer: A real-world study using inverse probability of treatment weighting. Int J Surg, 2024, 110(7): 4231-4239.
|
7. |
Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): A multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet, 2022, 399(10335): 1607-1617.
|
8. |
Remon J, Soria JC, Peters S. Early and locally advanced non-small-cell lung cancer: An update of the ESMO Clinical Practice Guidelines focusing on diagnosis, staging, systemic and local therapy. Ann Oncol, 2021, 32(12): 1637-1642.
|
9. |
Altorki N, Wang X, Damman B, et al. Lobectomy, segmentectomy, or wedge resection for peripheral clinical T1aN0 non-small cell lung cancer: A post hoc analysis of CALGB 140503 (Alliance). J Thorac Cardiovasc Surg, 2024, 167(1): 338-347. e1.
|
10. |
Nex G, Schiavone M, De Palma A, et al. How to identify intersegmental planes in performing sublobar anatomical resections. J Thorac Dis, 2020, 12(6): 3369-3375.
|
11. |
Andolfi M, Potenza R, Seguin-Givelet A, et al. Identification of the intersegmental plane during thoracoscopic segmentectomy: state of the art. Interact Cardiovasc Thorac Surg, 2020, 30(3): 329-336.
|
12. |
Xing M, Tong L, Duan H, et al. Partial pressure of oxygen control versus modified inflation-deflation method in identifying intersegmental plane during anatomical sublobectomy: A prospective, randomized, controlled trial. J Thorac Dis, 2025, 17(2): 1042-1053.
|
13. |
Wang J, Xu X, Wen W, et al. Modified method for distinguishing the intersegmental border for lung segmentectomy. Thorac Cancer, 2018, 9(2): 330-333.
|
14. |
Cai L, Wang C, Luo T, et al. Delineation of intersegmental plane: Application of blood flow blocking method in pulmonary segmentectomy. J Cardiothorac Surg, 2024, 19(1): 684.
|
15. |
Onodera K, Suzuki J, Miyoshi T, et al. Comparison of various lung intersegmental plane identification methods. Gen Thorac Cardiovasc Surg, 2023, 71(2): 90-97.
|
16. |
Zhang X, Li C, Jin R, et al. Intraoperative identification of the intersegmental plane: From the beginning to the future. Front Surg, 2022, 9: 948878.
|
17. |
Kah Meng L, Ghista DN, Rudolph H. Determination of pulmonary gases (O2 & CO2) metabolic-rates and lung diffusion coefficients based on the inspired and expired air compositions and venous blood and gas concentration. Conf Proc IEEE Eng Med Biol Soc, 2005, 2005: 6161-6164.
|
18. |
Visser BF. Pulmonary diffusion of carbon dioxide. Phys Med Biol, 1960, 5: 155-166.
|
19. |
Wagner PD. Blood gas transport: Implications for O2 and CO2 exchange in lungs and tissues. Semin Respir Crit Care Med, 2023, 44(5): 584-593.
|
20. |
Yang W, Liu Z, Yang C, et al. Combination of nitrous oxide and the modified inflation-deflation method for identifying the intersegmental plane in segmentectomy: A randomized controlled trial. Thorac Cancer, 2021, 12(9): 1398-1406.
|
21. |
Adams SJ, Stone E, Baldwin DR, et al. Lung cancer screening. Lancet, 2023, 401(10374): 390-408.
|
22. |
Mazzone PJ, Silvestri GA, Souter LH, et al. Screening for lung cancer: CHEST guideline and expert panel report. Chest, 2021, 160(5): e427-e494.
|
23. |
Cheng M, Ding R, Wang S. Diagnosis and treatment of high-risk bilateral lung ground-glass opacity nodules. Asian J Surg, 2024, 47(7): 2969-2974.
|
24. |
Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg, 1995, 60(3): 615-622.
|
25. |
Cahan WG. Radical lobectomy. J Thorac Cardiovasc Surg, 1960, 39: 555-572.
|
26. |
Altorki N, Wang X, Kozono D, et al. Lobar or sublobar resection for peripheral stage ia non-small-cell lung cancer. N Engl J Med, 2023, 388(6): 489-498.
|
27. |
Lin H, Peng Z, Zhou K, et al. Differential efficacy of segmentectomy and wedge resection in sublobar resection compared to lobectomy for solid-dominant stage IA lung cancer: A systematic review and meta-analysis. Int J Surg, 2024, 110(2): 1159-1171.
|
28. |
Tsutani Y, Handa Y, Shimada Y, et al. Comparison of cancer control between segmentectomy and wedge resection in patients with clinical stage ⅠA non-small cell lung cancer. J Thorac Cardiovasc Surg, 2021, 162(4): 1244-1252. e1.
|
29. |
Cao J, Yuan P, Wang Y, et al. Survival rates after lobectomy, segmentectomy, and wedge resection for non-small cell lung cancer. Ann Thorac Surg, 2018, 105(5): 1483-1491.
|
30. |
Akamine T, Yotsukura M, Yoshida Y, et al. Feasibility and effectiveness of segmentectomy versus wedge resection for clinical stage Ⅰ non-small-cell lung cancer. Eur J Cardiothorac Surg, 2023, 63(3).
|
31. |
Nakazawa S, Shimizu K, Mogi A, et al. VATS segmentectomy: Past, present, and future. Gen Thorac Cardiovasc Surg, 2018, 66(2): 81-90.
|
32. |
Matsuura Y. Precise identification of the intersegmental plane for lung cancer segmentectomy. Transl Cancer Res, 2023, 12(2): 213-216.
|
33. |
Zuo Y, Li L, Liu S. Kohn’s pores are not responsible for collateral ventilation between inflated and deflated segments: A microscopic study of pulmonary intersegmental septa in the human lung. J Anat, 2015, 226(4): 381-385.
|
34. |
Misaki N, Chang SS, Gotoh M, et al. A novel method for determining adjacent lung segments with infrared thoracoscopy. J Thorac Cardiovasc Surg, 2009, 138(3): 613-618.
|
35. |
Sugimoto S, Oto T, Miyoshi K, et al. A novel technique for identification of the lung intersegmental plane using dye injection into the segmental pulmonary artery. J Thorac Cardiovasc Surg, 2011, 141(5): 1325-1327.
|
36. |
Chen D, Lin Y, Xu H, et al. The application of indocyanine green fluorescence imaging to determine intersegmental plane during thoracoscopic segmentectomy: A meta-analysis and systematic review. Asian J Surg, 2024.
|
37. |
Okada M, Mimura T, Ikegaki J, et al. A novel video-assisted anatomic segmentectomy technique: selective segmental inflation via bronchofiberoptic jet followed by cautery cutting. J Thorac Cardiovasc Surg, 2007, 133(3): 753-758.
|
38. |
Li NL, Lin CS, Shih CH, et al. Intraoperative cardiac arrest caused by air embolism during video-assisted thoracoscopic segmentectomy. J Thorac Cardiovasc Surg, 2018, 155(3): e111-e113.
|
39. |
Kamiyoshihara M, Kakegawa S, Morishita Y. Convenient and improved method to distinguish the intersegmental plane in pulmonary segmentectomy using a butterfly needle. Ann Thorac Surg, 2007, 83(5): 1913-1914.
|
40. |
Oh S, Suzuki K, Miyasaka Y, et al. New technique for lung segmentectomy using indocyanine green injection. Ann Thorac Surg, 2013, 95(6): 2188-2190.
|
41. |
Ito A, Takao M, Shimamoto A, et al. Prolonged intravenous indocyanine green visualization by temporary pulmonary vein clamping: Real-time intraoperative fluorescence image guide for thoracoscopic anatomical segmentectomy. Eur J Cardiothorac Surg, 2017, 52(6): 1225-1226.
|
42. |
刘宝东. 胸腔镜肺段切除术段间界识别技术及生理机制研究进展. 中国胸心血管外科临床杂志, 2024, 31(9): 1351-1355.
|
43. |
Shields TW. General thoracic surgery. Lippincott Williams & Wilkins, 2005.
|
44. |
Tsubota N. An improved method for distinguishing the intersegmental plane of the lung. Surg Today, 2000, 30(10): 963-964.
|
45. |
Iwata H, Shirahashi K, Mizuno Y, et al. Surgical technique of lung segmental resection with two intersegmental planes. Interact Cardiovasc Thorac Surg, 2013, 16(4): 423-425.
|
46. |
Sun Y, Zhang Q, Wang Z, et al. Is the near-infrared fluorescence imaging with intravenous indocyanine green method for identifying the intersegmental plane concordant with the modified inflation-deflation method in lung segmentectomy? Thorac Cancer, 2019, 10(10): 2013-2021.
|
47. |
Pfitzner J, Peacock MJ, Harris RJ. Speed of collapse of the non-ventilated lung during single-lung ventilation for thoracoscopic surgery: The effect of transient increases in pleural pressure on the venting of gas from the non-ventilated lung. Anaesthesia, 2001, 56(10): 940-946.
|
48. |
Ko R, McRae K, Darling G, et al. The use of air in the inspired gas mixture during two-lung ventilation delays lung collapse during one-lung ventilation. Anesth Analg, 2009, 108(4): 1092-1096.
|
49. |
Myles PS, Leslie K, Chan MT, et al. Avoidance of nitrous oxide for patients undergoing major surgery: A randomized controlled trial. Anesthesiology, 2007, 107(2): 221-231.
|
50. |
Ghista D, Loh K, Ng D. Lung gas composition and transfer analysis: O2 and CO2 diffusion coefficients and metabolic rates. Human Respiration, 2006: 77-93.
|
51. |
Chakraborty S, Balakotaiah V, Bidani A. Diffusing capacity reexamined: relative roles of diffusion and chemical reaction in red cell uptake of O2, CO, CO2, and NO. J Appl Physiol (1985), 2004, 97(6): 2284-2302.
|
52. |
Mairbäurl H, Weber RE. Oxygen transport by hemoglobin. Compr Physiol, 2012, 2(2): 1463-1489.
|
53. |
Shigemura M, Lecuona E, Sznajder JI. Effects of hypercapnia on the lung. J Physiol, 2017, 595(8): 2431-2437.
|
54. |
Weinberger SE, Schwartzstein RM, Weiss JW. Hypercapnia. N Engl J Med, 1989, 321(18): 1223-1231.
|
55. |
Bautista AF, Akca O. Hypercapnia: Is it protective in lung injury? Med Gas Res, 2013, 3(1): 23.
|
56. |
Brower RG, Matthay MA, Morris A, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med, 2000, 342(18): 1301-1308.
|
57. |
Laffey JG, O’Croinin D, McLoughlin P, et al. Permissive hypercapnia–role in protective lung ventilatory strategies. Intensive Care Med, 2004, 30(3): 347-356.
|
58. |
Shibata K, Cregg N, Engelberts D, et al. Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase. Am J Respir Crit Care Med, 1998, 158(5 Pt 1): 1578-1584.
|
59. |
Kregenow DA, Rubenfeld GD, Hudson LD, et al. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med, 2006, 34(1): 1-7.
|
60. |
Hickling KG, Walsh J, Henderson S, et al. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: A prospective study. Crit Care Med, 1994, 22(10): 1568-1578.
|
61. |
Contreras M, Masterson C, Laffey JG. Permissive hypercapnia: What to remember. Curr Opin Anaesthesiol, 2015, 28(1): 26-37.
|
62. |
Sinclair SE, Kregenow DA, Starr I, et al. Therapeutic hypercapnia and ventilation-perfusion matching in acute lung injury: Low minute ventilation vs inspired CO2. Chest, 2006, 130(1): 85-92.
|
63. |
Gao W, Liu DD, Li D, et al. Effect of therapeutic hypercapnia on inflammatory responses to one-lung ventilation in lobectomy patients. Anesthesiology, 2015, 122(6): 1235-1252.
|
64. |
O’Croinin BR, Young DA, Maier LE, et al. Influence of hypercapnia and hypercapnic hypoxia on the heart rate response to apnea. Physiol Rep, 2024, 12(11): e16054.
|
65. |
Almanza-Hurtado A, Polanco Guerra C, Martínez-Ávila MC, et al. Hypercapnia from physiology to practice. Int J Clin Pract, 2022, 2022: 2635616.
|
66. |
Strapazzon G, Gatterer H, Falla M, et al. Hypoxia and hypercapnia effects on cerebral oxygen saturation in avalanche burial: A pilot human experimental study. Resuscitation, 2021, 158: 175-182.
|