1. |
Steindl A, Leitner J, Schwarz M, et al. Sarcopenia in neurological patients: standard values for temporal muscle thickness and muscle strength evaluation. J Clin Med, 2020, 9(5): 1272.
|
2. |
Katsuki M, Narita N, Sasaki K, et al. Standard values for temporal muscle thickness in the Japanese population who undergo brain check-up by magnetic resonance imaging. Surg Neurol Int, 2021, 12: 67.
|
3. |
燕铁斌, 章马兰, 于佳妮, 等. 国际功能、残疾和健康分类(ICF)专家共识. 中国康复医学杂志, 2021, 36(1): 4-9.
|
4. |
Chen LK, Woo J, Assantachai P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc, 2020, 21(3): 300-307. e2.
|
5. |
Park J, Park J, Kim S, et al. Correlation between temporal muscle thickness and grip strength in hemiplegic patients with acute stroke. Front Neurol, 2023, 14: 1252707.
|
6. |
吴晓莉, 康晓宇, 李文军, 等. 混合脑机接口技术用于痉挛性偏瘫手功能训练两例. 华西医学, 2024, 39(6): 993-995.
|
7. |
Boyer O, Schaefer F, Haffner D, et al. Management of congenital nephrotic syndrome: consensus recommendations of the ERKNet-ESPN working group. Nat Rev Nephrol, 2021, 17(4): 277-289.
|
8. |
Huang WY, Chang CW, Chen KH, et al. Characteristics of acute ischemic stroke in patients with Nephrotic syndrome. Ren Fail, 2023, 45(2): 2284214.
|
9. |
Lin R, McDonald G, Jolly T, et al. A systematic review of prophylactic anticoagulation in nephrotic syndrome. Kidney Int Rep, 2019, 5(4): 435-447.
|
10. |
Vestergaard SV, Birn H, Darvalics B, et al. Risk of arterial thromboembolism, venous thromboembolism, and bleeding in patients with nephrotic syndrome: a population-based cohort study. Am J Med, 2022, 135(5): 615-625. e9.
|
11. |
Kelly DM, Ademi Z, Doehner W, et al. Chronic kidney disease and cerebrovascular disease: consensus and guidance from a KDIGO controversies conference. Stroke, 2021, 52(7): e328-e346.
|
12. |
王健翔, 殷小焦, 穆茂容, 等. 脑卒中相关性肌少症的患病率及危险因素的 Meta 分析. 实用心脑肺血管病杂志, 2025, 33(4): 57-63.
|
13. |
骆晓靖, 胡填, 古剑雄. 脑卒中相关性肌少症的研究进展. 实用心脑肺血管病杂志, 2025, 33(3): 136-140.
|
14. |
陈冬丽, 石岩, 李盛楠. 多学科协作综合康复训练在脑卒中合并阿尔兹海默病患者中康复效果. 辽宁医学杂志, 2023, 37(2): 47-49.
|
15. |
盛少婷, 汪梦月, 方自洁, 等. 多学科协作康复训练对中青年脑卒中患者自我效能及重返工作准备度的影响. 中西医结合护理(中英文), 2023, 9(8): 166-168.
|
16. |
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing, 2019, 48(1): 16-31.
|
17. |
Bodine SC, Furlow JD. Glucocorticoids and skeletal muscle. Adv Exp Med Biol, 2015, 872: 145-176.
|
18. |
Chon J, Soh Y, Shim GY. Stroke-related sarcopenia: pathophysiology and diagnostic tools. Brain Neurorehabil, 2024, 17(3): e23.
|
19. |
Su Y, Yuki M, Otsuki M. Prevalence of stroke-related sarcopenia: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis, 2020, 29(9): 105092.
|
20. |
Surmeli DM, Karpuzcu HC, Atmis V, et al. Association between sarcopenia and erectile dysfunction in older males. Arch Gerontol Geriatr, 2022, 99: 104619.
|
21. |
Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet, 2019, 393(10191): 2636-2646.
|
22. |
Kim YJ, Moon S, Yu JM, et al. Implication of diet and exercise on the management of age-related sarcopenic obesity in Asians. Geriatr Gerontol Int, 2022, 22(9): 695-704.
|
23. |
Shen Y, Shi Q, Nong K, et al. Exercise for sarcopenia in older people: a systematic review and network meta-analysis. J Cachexia Sarcopenia Muscle, 2023, 14(3): 1199-1211.
|
24. |
Colleluori G, Villareal DT. Aging, obesity, sarcopenia and the effect of diet and exercise intervention. Exp Gerontol, 2021, 155: 111561.
|
25. |
Yang S, Tian M, Dai Y, et al. Infection and chronic disease activate a systemic brain-muscle signaling axis. Sci Immunol, 2024, 9(97): eadm7908.
|
26. |
Scisciola L, Fontanella RA, Surina, et al. Sarcopenia and cognitive function: role of myokines in muscle brain cross-talk. Life (Basel), 2021, 11(2): 173.
|
27. |
Arosio B, Calvani R, Ferri E, et al. Sarcopenia and cognitive decline in older adults: targeting the muscle-brain axis. Nutrients, 2023, 15(8): 1853.
|
28. |
Lei T, Jiang Z, Wang J, et al. Genetic influence of the brain on muscle structure: a Mendelian randomization study of sarcopenia. J Cachexia Sarcopenia Muscle, 2025, 16(1): e13647.
|
29. |
Yang G, Xie W, Li B, et al. Casual associations between brain structure and sarcopenia: a large-scale genetic correlation and Mendelian randomization study. Aging Cell, 2024, 23(10): e14252.
|
30. |
Abiri R, Borhani S, Sellers EW, et al. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng, 2019, 16(1): 011001.
|
31. |
Lima JPS, Silva LA, Delisle-Rodriguez D, et al. Unraveling transformative effects after tdcs and bci intervention in chronic post-stroke patient rehabilitation-an alternative treatment design study. Sensors (Basel), 2023, 23(23): 9302.
|
32. |
Chew E, Teo WP, Tang N, et al. Using transcranial direct current stimulation to augment the effect of motor imagery-assisted brain-computer interface training in chronic stroke patients-cortical reorganization considerations. Front Neurol, 2020, 11: 948.
|
33. |
Ding Q, Lin T, Wu M, et al. Influence of iTBS on the acute neuroplastic change after BCI training. Front Cell Neurosci, 2021, 15: 653487.
|
34. |
Chung SW, Hill AT, Rogasch NC, et al. Use of theta-burst stimulation in changing excitability of motor cortex: a systematic review and meta-analysis. Neurosci Biobehav Rev, 2016, 63: 43-64.
|
35. |
Wang H, Zheng H, Wu H, et al. Behavior-dependent corticocortical contributions to imagined grasping: a BCI-triggered TMS study. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 519-529.
|
36. |
张泽正, 卞爱琳. 共病对老年住院患者肌肉功能的影响. 中华全科医学, 2024, 22(1): 50-54.
|