• Department of Orthopedics and Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China;
TU Chongqi, Email: tucq@scu.edu.cn
Export PDF Favorites Scan Get Citation

Objective  To evaluated the application effect of reverse digital modeling combined with three-dimensional (3D)-printed disease models in the standardized training of orthopedic residents focusing on pelvic tumors. Methods  From August 2022 to August 2023, 60 orthopedic residents from West China Hospital, Sichuan University were randomly assigned to a trial group (n=30) and a control group (n=30). The trial group received instruction using reverse digital modeling and 3D-printed pelvic tumor models, while the control group underwent traditional teaching methods. Teaching outcomes were evaluated and compared between groups through knowledge tests, practical skill assessments, and satisfaction surveys. Results  Before training, there was no statistically significant difference in knowledge tests or practical skill assessments between the two groups (P>0.05). After training, the trial group showed significantly better performance than the control group in knowledge tests (90.5±5.2 vs. 78.4±6.8, P<0.05), skill assessments (92.7±4.9 vs. 81.3±6.2, P<0.05), and satisfaction surveys (9.40±1.10 vs. 7.60±1.20, P<0.05). One month after training, the trial group still showed significantly better performance than the control group in knowledge tests (88.1±6.4 vs. 72.3±7.1, P<0.05) and skill assessments (90.3±5.8 vs. 75.6±6.9, P<0.05). Conclusions  Reverse digital modeling combined with 3D printing offers an intuitive and effective teaching approach that improves comprehension of pelvic tumor anatomy and strengthens clinical and technical competencies. This method significantly enhances learning outcomes in standardized residency training and holds promise for broader integration into medical education.

Copyright © the editorial department of West China Medical Journal of West China Medical Publisher. All rights reserved