1. |
王帅, 戎萍. 儿童抽动障碍复发相关因素及治疗的研究进展. 中华中医药杂志, 2023, 38(8): 3747-3751.
|
2. |
美国精神学会. 精神障碍诊断与统计手册. 张道龙, 等, 译. 5 版. 北京: 北京大学出版社, 2014: 34-35.
|
3. |
卢青, 孙丹, 刘智胜. 中国抽动障碍诊断和治疗专家共识解读. 中华实用儿科临床杂志, 2021, 36(9): 647-653.
|
4. |
姜妍琳, 张蔷, 翟睿, 等. 中国儿童抽动障碍患病率及危险因素系统评价. 中国儿童保健杂志, 2023, 31(6): 661-667.
|
5. |
王诗妍, 马丙祥, 李瑞星, 等. 儿童抽动障碍研究进展. 中国中西医结合儿科学, 2021, 13(4): 297-301.
|
6. |
Olszewski RT, Bukhari N, Zhou J, et al. NAAG peptidase inhibition reduces locomotor activity and some stereotypes in the PCP model of schizophrenia via group Ⅱ mGluR. J Neurochem, 2004, 89(4): 876-885.
|
7. |
Widomska J, De Witte W, Buitelaar JK, et al. Molecular landscape of Tourette’s disorder. Int J Mol Sci, 2023, 24(2): 1428.
|
8. |
Leckman JF, Riddle MA, Berrettini WH, et al. Elevated CSF dynorphin A [1-8] in Tourette’s syndrome. Life Sci, 1988, 43(24): 2015-2023.
|
9. |
Panyard DJ, Kim KM, Darst BF, et al. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol, 2021, 4(1): 63.
|
10. |
Birney E. Mendelian randomization. Cold Spring Harb Perspect Med, 2022, 12(4): a041302.
|
11. |
Hemani G, Zheng J, Elsworth B, et al. The MR-base platform supports systematic causal inference across the human phenome. Elife, 2018, 7: e34408.
|
12. |
Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol, 2013, 37(7): 658-665.
|
13. |
Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol, 2011, 40(3): 740-752.
|
14. |
Bowden J, Del Greco MF, Minelli C, et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med, 2017, 36(11): 1783-1802.
|
15. |
Burgess S, Scott RA, Timpson NJ, et al. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol, 2015, 30(7): 543-552.
|
16. |
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol, 2015, 44(2): 512-525.
|
17. |
Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol, 2016, 40(4): 304-314.
|
18. |
Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet, 2018, 50(5): 693-698.
|
19. |
Varki A, Gagneux P. Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci, 2012, 1253(1): 16-36.
|
20. |
Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol, 2014, 14(10): 653-666.
|
21. |
Varki A. Colloquium paper: uniquely human evolution of sialic acid genetics and biology. Proc Natl Acad Sci U S A, 2010, 107(Suppl 2): 8939-8946.
|
22. |
侯晓君, 林珊, 林祥泉, 等. 抽动障碍儿童 Th 淋巴细胞及其亚群的变化. 中国当代儿科杂志, 2018, 20(7): 519-523.
|
23. |
Tate SS, Meister A. Gamma-glutamyl transpeptidase: catalytic, structural and functional aspects. Mol Cell Biochem, 1981, 39: 357-368.
|
24. |
Liu Y, Hyde AS, Simpson MA, et al. Emerging regulatory paradigms in glutathione metabolism. Adv Cancer Res, 2014, 122: 69-101.
|
25. |
Do KQ, Lauer CJ, Schreiber W, et al. Gamma-glutamylglutamine and taurine concentrations are decreased in the cerebrospinal fluid of drug-naive patients with schizophrenic disorders. J Neurochem, 1995, 65(6): 2652-2662.
|
26. |
Hammond JW, Potter M, Truscott R, et al. Gamma-glutamylglutamine identified in plasma and cerebrospinal fluid from hyperammonaemic patients. Clin Chim Acta, 1990, 194(2/3): 173-183.
|
27. |
Hao J, Zhang X, Liu Y, et al. Cross-sectional exploration of the relationship between glutamate abnormalities and tic disorder severity using proton magnetic resonance spectroscopy. Phenomics, 2022, 3(2): 138-147.
|
28. |
Chang FM. Update current understanding of neurometabolic disorders related to lysine metabolism. Epilepsy Behav, 2023, 146: 109363.
|
29. |
Wang Z, Liu H. Lysine methylation regulates nervous system diseases. Neuropeptides, 2019, 76: 101929.
|
30. |
García-Giménez JL, Romá-Mateo C, Pérez-Machado G, et al. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radic Biol Med, 2017, 112: 36-48.
|
31. |
Müller T, Muhlack S. Cysteinyl-glycine reduction as marker for levodopa-induced oxidative stress in Parkinson’s disease patients. Mov Disord, 2011, 26(3): 543-546.
|
32. |
Loffredo L, Spalice A, Salvatori F, et al. Oxidative stress and gut-derived lipopolysaccharides in children affected by paediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. BMC Pediatr, 2020, 20(1): 127.
|
33. |
Stein AF, Dills RL, Klaassen CD. High-performance liquid chromatographic analysis of glutathione and its thiol and disulfide degradation products. J Chromatogr, 1986, 381(2): 259-270.
|
34. |
Dambrova M, Makrecka-Kuka M, Kuka J, et al. Acylcarnitines: nomenclature, biomarkers, therapeutic potential, drug targets, and clinical trials. Pharmacol Rev, 2022, 74(3): 506-551.
|
35. |
Kazanasmaz Halil, Karaca M. Investigation of alanine, propionylcarnitine (C3) and 3-hydroxyisovalerylcarnitine (C5-OH) levels in patients with partial biotinidase deficiency. Turk J Biochem, 2019, 44(4): 482-486.
|
36. |
Gordon S, Lee JS, Scott TM, et al. Metabolites and MRI-derived markers of AD/ADRD risk in a puerto rican cohort. Res Sq, 2024: rs. 3. rs-3941791.
|
37. |
Swell L, Boiter TA, Field H Jr, et al. Pantothenate and dietary cholesterol in the maintenance of blood and tissue cholesterol esters. J Nutr, 1955, 57(1): 121-132.
|
38. |
Hayflick SJ. Defective pantothenate metabolism and neurodegeneration. Biochem Soc Trans, 2014, 42(4): 1063-1068.
|
39. |
Kurup RK, Kurup PA. Hypothalamic digoxin deficiency in obsessive compulsive disorder and la Tourette’s syndrome. Int J Neurosci, 2002, 112(7): 797-816.
|