1. |
Finch A J, Kim J R. Thermophilic proteins as versatile scaffolds for protein engineering. Microorganisms, 2018, 6(4): 97.
|
2. |
Silva N H, Vilela C, Marrucho I M, et al. Protein-based materials: from sources to innovative sustainable materials for biomedical applications. Mater Chem B, 2014, 2(24): 3715-3740.
|
3. |
Guta M, Abebe G, Bacha K, et al. Screening and characterization of thermostable enzyme-producing bacteria from selected hot springs of Ethiopia. Microbiol Spectr, 2024, 12(3): e0371023.
|
4. |
Venev S V, Zeldovich K B. Thermophilic adaptation in prokaryotes is constrained by metabolic costs of proteostasis. Mol Biol Evol, 2018, 35(1): 211-224.
|
5. |
Rousseau M, Oulavallickal T, Williamson A, et al. Characterisation and engineering of a thermophilic RNA ligase from Palaeococcus pacificus. Nucleic Acids Res, 2024, 52(7): 3924-3937.
|
6. |
Barabasi A L, Oltvai Z N. Network biology: understanding the cell's functional organization. Nat Rev Genet, 2004, 5(2): 101-113.
|
7. |
常珊, 焦雄, 王美华, 等. 蛋白质氨基酸网络研究进展. 现代生物医学进展, 2011, 11(001): 190-193.
|
8. |
Grewal R K, Roy S. Modeling proteins as residue interaction networks. Protein Pept Lett, 2015, 22(10): 923-933.
|
9. |
Guan Ruining, Liu Wencheng, Li Ningqi, et al. Machine learning models based on residue interaction network for ABCG2 transportable compounds recognition. Environ Pollut, 2023, 337: 122620.
|
10. |
Inan T, Yuce M, Mackerell JR A D, et al. Exploring druggable binding sites on the Class A GPCRs using the residue interaction network and site identification by ligand competitive saturation. ACS Omega, 2024, 9(38): 40154-40171.
|
11. |
Hu Guang, Yan Wenying, Zhou Jianhong, et al. Residue interaction network analysis of Dronpa and a DNA clamp. J Theor Biol, 2014, 348: 55-64.
|
12. |
Verkhivker G. Molecular dynamics simulations and modelling of the residue interaction networks in the BRAF kinase complexes with small molecule inhibitors: probing the allosteric effects of ligand-induced kinase dimerization and paradoxical activation. Mol Biosyst, 2016, 12(10): 3146-3165.
|
13. |
Jiao Xiong, Chang Shan, Li Chunhua, et al. Construction and application of the weighted amino acid network based on residue fluctuations. Phys Rev E Stat Nonlin Soft Matter Phys, 2007, 75(5 Pt 1): 051903.
|
14. |
Jiao Xiong, Yang Lifeng, An Meiwen, et al. A modified amino acid network model contains similar and dissimilar weight. Comput Math Methods Med, 2013, 2013(1): 197892.
|
15. |
Wang Ziqi, Zhang Yuanyuan, Wang Shudong, et al. SINE: second-order information network embedding. IEEE Access, 2020, 8: 139044-139051.
|
16. |
Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations// Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM SIGKDD, 2014: 701-710.
|
17. |
Grover A, Leskovec J. node2vec: Scalable feature learning for networks// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 855-864.
|
18. |
Berman H M, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res, 2000, 28(1): 235-242.
|
19. |
Schober I, Koblitz J, Sardà C J, et al. BacDive in 2025: the core database for prokaryotic strain data. Nucleic Acids Res, 2025, 53(D1): D748-D756.
|
20. |
Piovesan D, Minervini G, Tosatto S C. The RING 2. 0 web server for high quality residue interaction networks. Nucleic Acids Res, 2016, 44(W1): W367-W74.
|
21. |
Page L, Brin S, Motwani R, et al. The PageRank citation ranking: Bringing order to the web. stanford digital libraries working paper, 1999.
|
22. |
Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. arXiv preprint arXiv, 2013: 1301.3781.
|
23. |
Le Q, Mikolov T. Distributed representations of sentences and documents// Proceedings of the 31th International Conference on Machine Learning. Beijing: IMLS, 2014: 1188-1196.
|
24. |
Shaw P, Uszkoreit J, Vaswani A. Self-attention with relative position representations. arXiv preprint arXiv, 2018: 1803.02155.
|