1. |
Moradi A, Nazari S S H, Rahmani K. Sleepiness and the risk of road traffic accidents: A systematic review and meta-analysis of previous studies. Transport Res F-Traf, 2019, 65: 620-629.
|
2. |
Chand A, Jayesh S, Bhasi A B. Road traffic accidents: An overview of data sources, analysis techniques and contributing factors. Mater Today Proc, 2021, 47: 5135-5141.
|
3. |
Zhang Z, Ning H, Zhou F. A systematic survey of driving fatigue monitoring. IEEE T Intell Transp, 2022, 23(11): 19999-20020.
|
4. |
张瑞, 朱天军, 邹志亮, 等. 驾驶员疲劳驾驶检测方法研究综述. 计算机工程与应用, 2022, 58(21): 53-66.
|
5. |
Fu S, Yang Z, Ma Y, et al. Advancements in the intelligent detection of driver fatigue and distraction: a comprehensive review. Appl Sci, 2024, 14(7): 3016.
|
6. |
Lambay A, Liu Y, Morgan P L, et al. Machine learning assisted human fatigue detection, monitoring, and recovery. Digit Eng, 2024, 1: 100004.
|
7. |
Wang H, Han M, Avouka T, et al. Research on fatigue identification methods based on low-load wearable ECG monitoring devices. Rev Sci Instrum, 2023, 94(4): 045103.
|
8. |
管凯捷, 姚康, 任谊文, 等. 基于头动与眼电信号的疲劳检测研究. 计算机应用与软件, 2022, 39(2): 81-87.
|
9. |
Wang F, Wan Y, Li M, et al. Recent advances in fatigue detection algorithm based on EEG. Intell Autom Soft Co, 2023, 35(3): 3573.
|
10. |
Lu J, Zheng X, Tang L, et al. Can steering wheel detect your driving fatigue?. IEEE T Veh Technol, 2021, 70(6): 5537-5550.
|
11. |
Halomoan J, Ramli K, Sudiana D, et al. A new ECG data processing approach to developing an accurate driving fatigue detection framework with heart rate variability analysis and ensemble learning. Information, 2023, 14(4): 210.
|
12. |
Nemcova A, Janousek O, Vitek M, et al. Testing of features for fatigue detection in EOG. Bio-Med Mater Eng, 2017, 28(4): 379-392.
|
13. |
Kar S, Bhagat M, Routray A. EEG signal analysis for the assessment and quantification of driver’s fatigue. Transport Res F-Traf, 2010, 13(5): 297-306.
|
14. |
石锦璇, 王昆. 基于栈式自编码的驾驶员脑电信号疲劳检测方法. 测试技术学报, 2023, 37(2): 140-145.
|
15. |
Zheng W L, Lu B L. A multimodal approach to estimating vigilance using EEG and forehead EOG. J Neural Eng, 2017, 14(2): 026017.
|
16. |
Wu W, Wu Q M J, Sun W, et al. A regression method with subnetwork neurons for vigilance estimation using EOG and EEG. IEEE T Cogn Dev Syst, 2018, 13(1): 209-222.
|
17. |
王家曜, 张震, 宋光乐, 等. 一种基于脑电信号的疲劳驾驶检测方法. 控制工程, 2024, 31(6): 1091-1098.
|
18. |
Dubey S R, Singh S K, Chaudhuri B B. Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing, 2022, 503: 92-108.
|
19. |
Segu M, Tonioni A, Tombari F. Batch normalization embeddings for deep domain generalization. Pattern Recogn, 2023, 135: 109115.
|
20. |
Wu L, Li J, Wang Y, et al. R-drop: Regularized dropout for neural networks. Adv Neural Inf Process Syst, 2021, 34: 10890-10905.
|
21. |
Zheng Y, Ding J, Liu F, et al. Adaptive neural decision tree for EEG based emotion recognition. Inf Sci, 2023, 643: 119160.
|
22. |
Mao A, Mohri M, Zhong Y. Cross-entropy loss functions: Theoretical analysis and applications// International Conference on Machine learning(ICML). Honolulu: PMLR, 2023: 23803-23828.
|
23. |
Gao X Y, Zhang Y F, Zheng W L, et al. Evaluating driving fatigue detection algorithms using eye tracking glasses// 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). Montpellier: IEEE, 2015: 767-770.
|
24. |
Yi Y, Zhang H, Zhang W, et al. Fatigue working detection based on facial multifeature fusion. IEEE Sens J, 2023, 23(6): 5956-5961.
|
25. |
Barwick F, Arnett P, Slobounov S. EEG correlates of fatigue during administration of a neuropsychological test battery. Clin Neurophysiol, 2012, 123(2): 278-284.
|
26. |
Zhang M, Zhao B, Li J, et al. Research on driver’s fatigue detection based on information fusion. Comput Mater Con, 2024, 79(1): 1039.
|
27. |
Stancin I, Cifrek M, Jovic A. A review of EEG signal features and their application in driver drowsiness detection systems. Sensors, 2021, 21(11): 3786.
|
28. |
Gao Z, Wang X, Yang Y, et al. EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation. IEEE T Neur Net Lear, 2019, 30(9): 2755-2763.
|
29. |
Gao D, Li P, Wang M, et al. CSF-GTNet: A novel multi-dimensional feature fusion network based on Convnext-GeLU-BiLSTM for EEG-signals-enabled fatigue driving detection. IEEE J Biomed Health, 2023, 28(5): 2558-2568.
|
30. |
Peng B, Zhang Y, Wang M, et al. TA-MFFNet: Multi-feature fusion network for EEG analysis and driving fatigue detection based on time domain network and attention network. Comput Biol Chem, 2023, 104: 107863.
|
31. |
Gao D, Wang K, Wang M, et al. SFT-Net: A network for detecting fatigue from EEG signals by combining 4D feature flow and attention mechanism. IEEE J Biomed Health, 2023, 28(8): 4444-4455.
|