- Laboratory Animal Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
CD4+ T cells play a dual role in both the protection and injury of retinal ganglion cells (RGC), participating in the critical immunopathological processes associated with retinal ischemia reperfusion injury (RIRI). T helper (Th) 1 and Th17 cells drive retinal inflammation by secreting pro-inflammatory cytokines, leading to RGC damage. In contrast, Th2 and regulatory T (Treg) cells secrete anti-inflammatory factors that modulate immune responses and reduce inflammation, thereby playing a crucial role in protecting RGC. However, under certain disease conditions, their roles may be reversed. Additionally, an imbalance between Th1 and Th2 cells, specifically the imbalance in the cytokines they secrete can influence disease progression. Therefore, a deeper understanding of the complex functions of CD4+ T cells and their subsets in both protecting and damaging retinal health is essential for immune-targeted therapies for RIRI.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Osborne NN, Casson RJ, Wood JPM, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies[J]. Prog Retin Eye Res, 2004, 23(1): 91-147. DOI: 10.1016/j.preteyeres.2003.12.001. |
2. | Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice[J]. Trends Neurosci, 2024, 47(12): 994-1013. DOI: 10.1016/j.tins.2024.09.010. |
3. | Huang P, Huo Y, Lou LX, et al. CD4 positive T helper cells contribute to retinal ganglion cell death in mouse model of ischemia reperfusion injury[J/OL]. Exp Eye Res, 2013, 115: 131-139[2013-06-20]. https://pubmed.ncbi.nlm.nih.gov/23792169/. DOI: 10.1016/j.exer.2013.06.015. |
4. | Khanh Vu TH, Chen H, Pan L, et al. CD4+ T-cell responses mediate progressive neurodegeneration in experimental ischemic retinopathy[J/OL]. Am J Pathol, 2020, 190(8): 1723-1734[2020-05-08]. https://pubmed.ncbi.nlm.nih.gov/32389572/. DOI: 10.1016/j.ajpath.2020.04.011. |
5. | He C, Peng K, Zhu X, et al. Th1 cells contribute to retinal ganglion cell loss in glaucoma in a VCAM-1-dependent manner[J/OL]. J Neuroinflammation, 2024, 21(1): 43[2024-02-05]. https://pubmed.ncbi.nlm.nih.gov/38317227/. DOI: 10.1186/s12974-024-03035-5. |
6. | Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol, 1986, 136(7): 2348-2357. DOI: 10.4049/jimmunol.136.7.2348. |
7. | 程丽娜, 钱韶红, 孙兴怀, 等. 多聚物-1免疫高眼压大鼠视网膜中助性T细胞的变化[J]. 中华医学杂志, 2011, 91(39): 2789-2792. DOI: 10.3760/cma.j.issn.0376-2491.2011.39.016.Cheng LN, Qian SH, Sun XH, et al. Expressional changes of Th1 and Th2 cells in retina of a rat glaucoma model vaccinated by Cop-1[J]. Natl Med J China, 2011, 91(39): 2789-2792. DOI: 10.3760/cma.j.issn.0376-2491.2011.39.016. |
8. | Saini C, Jiang S, Devlin J, et al. Association between heat shock protein-specific T-cell counts and retinal nerve fiber layer thickness in patients with primary open-angle glaucoma[J/OL]. Ophthalmol Sci, 2023, 3(3): 100310[2023-04-17]. https://pubmed.ncbi.nlm.nih.gov/37197701/. DOI: 10.1016/j.xops.2023.100310. |
9. | Chen H, Cho KS, Vu THK, et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma[J/OL]. Nat Commun, 2018, 9(1): 3209[2018-08-10]. https://pubmed.ncbi.nlm.nih.gov/30097565/. DOI: 10.1038/s41467-018-05681-9. |
10. | Zhu X, Zhu J. CD4 T helper cell subsets and related human immunological disorders[J/OL]. Int J Mol Sci, 2020, 21(21): 8011[2020-10-28]. https://pubmed.ncbi.nlm.nih.gov/33126494/. DOI: 10.3390/ijms21218011. |
11. | Yao B, Xin ZK, Wang D. The effect of curcumin on on intravitreal proinflammatory cytokines, oxidative stress markers, and vascular endothelial growth factor in an experimental model of diabetic retinopathy[J/OL]. J Physiol Pharmacol, 2023, 74(6): 10[2024-02-07]. https://pubmed.ncbi.nlm.nih.gov/38345446/. DOI: 10.26402/jpp.2023.6.07. |
12. | Zhou LY, Liu ZG, Sun YQ, et al. Preserving blood-retinal barrier integrity: a path to retinal ganglion cell protection in glaucoma and traumatic optic neuropathy[J/OL]. Cell Regen, 2025, 14(1): 13[2025-04-02]. https://pubmed.ncbi.nlm.nih.gov/40172766/. DOI: 10.1186/s13619-025-00228-y. |
13. | Eshaq RS, Harris NR. The role of tumor necrosis factor‐α and interferon‐γ in the hyperglycemia‐induced ubiquitination and loss of platelet endothelial cell adhesion molecule-1 in rat retinal endothelial cells[J/OL]. Microcirculation, 2021, 28(7): e12717[2021-05-29]. https://pubmed.ncbi.nlm.nih.gov/34008903/. DOI: 10.1111/micc.12717. |
14. | Dharmarajan S, Carrillo C, Qi Z, et al. Retinal inflammation in murine models of type 1 and type 2 diabetes with diabetic retinopathy[J]. Diabetologia, 2023, 66(11): 2170-2185. DOI: 10.1007/s00125-023-05995-4. |
15. | Mason RH, Minaker SA, Lahaie Luna G, et al. Changes in aqueous and vitreous inflammatory cytokine levels in proliferative diabetic retinopathy: a systematic review and meta-analysis[J/OL]. Eye, 2022, 2019: E1(2025-06-09)[2022-06-07]. https://pubmed.ncbi.nlm.nih.gov/35672457/. DOI: 10.1038/s41433-022-02127-x.[published online ahead of print]. |
16. | Yang J, Patil RV, Yu H, et al. T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma[J]. Am J Ophthalmol, 2001, 131(4): 421-426. DOI: 10.1016/S0002-9394(00)00862-X. |
17. | Husain S, Abdul Y, Webster C, et al. Interferon-Gamma (IFN-γ)-mediated retinal ganglion cell death in human tyrosinase T cell receptor transgenic mouse[J/OL]. PLoS One, 2014, 9(2): e89392[2014-02-28]. https://pubmed.ncbi.nlm.nih.gov/24586745/. DOI: 10.1371/journal.pone.0089392. |
18. | Li Q, Cheng Y, Zhang S, et al. TRPV4-induced Müller cell gliosis and TNF-αelevation-mediated retinal ganglion cell apoptosis in glaucomatous rats via JAK2/STAT3/NF-κB pathway[J/OL]. J Neuroinflammation, 2021, 18(1): 271[2021-11-17]. https://pubmed.ncbi.nlm.nih.gov/34789280/. DOI: 10.1186/s12974-021 -02315-8. |
19. | Stritesky GL, Muthukrishnan R, Sehra S, et al. The transcription factor STAT3 is required for T helper 2 cell development[J]. Immunity, 2011, 34(1): 39-49. DOI: 10.1016/j.immuni.2010.12.013. |
20. | Zuo Z, Fan B, Zhang Z, et al. Interleukin-4 protects retinal ganglion cells and promotes axon regeneration[J/OL]. Cell Commun Signal, 2024, 22(1): 236[2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/38650003/. DOI: 10.1186/s12964-024-01604-y. |
21. | Shi H, Berger EA. Characterization of site-specific phosphorylation of NF-κB p65 in retinal cells in response to high glucose and cytokine polarization[J/OL]. Mediators Inflamm, 2018, 2018: 3020675[2018-04-26]. https://pubmed.ncbi.nlm.nih.gov/29853786/. DOI: 10.1155/2018/3020675. |
22. | Dai L, Luo L, Zhang Y, et al. Protective effect of Apelin-13 on oxygen and glucose deprivation induced-damage in retinal ganglion cells cultured in vitro[J/OL]. J Mol Histol, 2025, 56(1): 25[2024-12-04]. https://pubmed.ncbi.nlm.nih.gov/39627585/. DOI: 10.1007/s10735-024-10279-1. |
23. | Yuan Y, Shao L. Germacrone protects against NF-κB-mediated inflammatory signaling, apoptosis, and retinal ganglion cell survival in a rat glaucoma model[J]. Tohoku J Exp Med, 2024, 263(3): 185-193. DOI: 10.1620/tjem.2024.J028. |
24. | Yong Lee I, Kim J, Ko EM, et al. Interleukin-4 inhibits the vascular endothelial growth factor- and basic fibroblast growth factor-induced angiogenesis in vitro[J]. Mol Cells, 2002, 14(1): 115-121. DOI: 10.1016/S1016-8478(23)15081-3. |
25. | Wu H, Hwang DK, Song X, et al. Association between aqueous cytokines and diabetic retinopathy stage[J/OL]. J Ophthalmol, 2017, 2017: 9402198[2017-06-07]. https://pubmed.ncbi.nlm.nih.gov/28680705/. DOI: 10.1155/2017/9402198. |
26. | Guo R, Zhang Y, Geng Y, et al. Electroacupuncture ameliorates inflammatory response induced by retinal ischemia-reperfusion injury and protects the retina through the DOR-BDNF/Trkb pathway[J/OL]. Front Neuroanat, 2023, 16: 1057929[2023-01-05]. https://pubmed.ncbi.nlm.nih.gov/36686575/. DOI: 10.3389/fnana.2022.1057929. |
27. | Chen D, Peng C, Ding XM, et al. Interleukin-4 promotes microglial polarization toward a neuroprotective phenotype after retinal ischemia/reperfusion injury[J]. Neural Regen Res, 2022, 17(12): 2755-2760. DOI: 10.4103/1673-5374.339500. |
28. | Goit RK, Taylor AW, Lo ACY. Anti-inflammatory α-Melanocyte-stimulating hormone protects retina after ischemia/reperfusion injury in type I diabetes[J/OL]. Front Neurosci, 2022, 16: 799739[2022-02-25]. https://pubmed.ncbi.nlm.nih.gov/35281489/. DOI: 10.3389/fnins.2022.799739. |
29. | Dong N, Xu B, Wang B, et al. Study of 27 aqueous humor cytokines in patients with type 2 diabetes with or without retinopathy[J]. Mol Vis, 2013, 19: 1734-1746. |
30. | Song S, Yu X, Zhang P, et al. Increased levels of cytokines in the aqueous humor correlate with the severity of diabetic retinopathy[J/OL]. J Diabetes Complications, 2020, 34(9): 107641[2020-05-30]. https://pubmed.ncbi.nlm.nih.gov/32605862/. DOI: 10.1016/j.jdiacomp.2020.107641. |
31. | Golshan-Tafti A, Bahrami M, Mohsenzadeh-Yazdi R, et al. Consolidating data on the association of IL-6 and IL-10 polymorphisms with the development of glaucoma: a meta-analysis[J]. Ophthalmic Genet, 2024, 45(4): 321-331. DOI: 10.1080/13816810.2024.2336964. |
32. | Feng Z, Yang Y, Shi CX, et al. Salidroside ameliorates diabetic retinopathy and Müller cell inflammation via the PI3K/Akt/GSK-3β/NF-κB pathway[J]. Mol Vis, 2024, 30: 1-16. |
33. | Feng S, Yu H, Yu Y, et al. Levels of inflammatory cytokines IL-1 β, IL-6, IL-8, IL-17A, and TNF- α in aqueous humour of patients with diabetic retinopathy[J/OL]. J Diabetes Res, 2018, 2018: 8546423[2018-04-04]. https://pubmed.ncbi.nlm.nih.gov/29850610/. DOI: 10.1155/2018/8546423. |
34. | Xiao R, Lei C, Zhang Y, et al. Interleukin-6 in retinal diseases: From pathogenesis to therapy[J/OL]. Exp Eye Res, 2023, 233: 109556[2023-06-27]. https://pubmed.ncbi.nlm.nih.gov/37385535/. DOI: 10.1016/j.exer.2023.109556. |
35. | Ulhaq ZS, Istifiani LA, Pamungkas SA. Evaluation of systemic IL-6 trans-signalling in patients with primary open-angle glaucoma[J]. J Fr Ophtalmol, 2023, 46(6): 622-629. DOI: 10.1016/j.jfo.2022.11.022. |
36. | Echevarria FD, Formichella CR, Sappington RM. Interleukin-6 deficiency attenuates retinal ganglion cell axonopathy and glaucoma-related vision loss[J/OL]. Front Neurosci, 2017, 11: 318[2017-05-31]. https://pubmed.ncbi.nlm.nih.gov/28620279/. DOI: 10.3389/fnins.2017.00318. |
37. | Liton PB, Luna C, Bodman M, et al. Induction of IL-6 expression by mechanical stress in the trabecular meshwork[J]. Biochem Biophys Res Commun, 2005, 337(4): 1229-1236. DOI: 10.1016/j.bbrc.2005.09.182. |
38. | Leibinger M, Andreadaki A, Gobrecht P, et al. Boosting central nervous system axon regeneration by circumventing limitations of natural cytokine signaling[J]. Mol Ther, 2016, 24(10): 1712-1725. DOI: 10.1038/mt.2016.102. |
39. | Fishman MA, Perelson AS. Th1/Th2 cross regulation[J/OL]. J Theor Biol, 1994, 170(1): 25-56[1994-09-07]. https://pubmed.ncbi.nlm.nih.gov/7967633/. DOI: 10.1006/jtbi.1994.1166. |
40. | Cao YL, Zhang FQ, Hao FQ. Th1/Th2 cytokine expression in diabetic retinopathy[J/OL]. Genet Mol Res, 2016, 15(3): gmr. 15037311[2016-07-15]. https://pubmed.ncbi.nlm.nih.gov/27525838/. DOI: 10.4238/gmr.15037311. |
41. | Kaviarasan K, Jithu M, Arif Mulla M, et al. Low blood and vitreal BDNF, LXA4 and altered Th1/Th2 cytokine balance are potential risk factors for diabetic retinopathy[J]. Metabolism, 2015, 64(9): 958-966. DOI: 10.1016/j.metabol.2015.04.005. |
42. | Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11): 1123-1132. DOI: 10.1038/ni1254. |
43. | Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases[J]. Semin Immunopathol, 2019, 41(3): 283-297. DOI: 10.1007/s00281-019-00733-8. |
44. | Mickael ME, Kubick N, Miftari K, et al. The role of Th17/Treg axis in retinal pathology associated with diabetes and treatment options[J/OL]. Biology, 2025, 14(3): 275[2025-03-07]. https://pubmed.ncbi.nlm.nih.gov/40136531/. DOI: 10.3390/biology14030275. |
45. | Bharadwaj AS, Schewitz-Bowers LP, Wei L, et al. Intercellular adhesion molecule 1 mediates migration of Th1 and Th17 cells across human retinal vascular endothelium[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 6917-6925. DOI: 10.1167/iovs.13-12058. |
46. | Pan L, Sze YH, Yang M, et al. Baicalein—a potent pro-homeostatic regulator of microglia in retinal ischemic injury[J/OL]. Front Immunol, 2022, 13: 837497[2022-02-21]. https://pubmed.ncbi.nlm.nih.gov/35265083/. DOI: 10.3389/fimmu.2022.837497. |
47. | Zapadka TE, Lindstrom SI, Batoki JC, et al. Aryl hydrocarbon receptor agonist VAF347 impedes retinal pathogenesis in diabetic mice[J/OL]. Int J Mol Sci, 2021, 22(9): 4335[2021-04-21]. https://pubmed.ncbi.nlm.nih.gov/33919327/. DOI: 10.3390/ijms22094335. |
48. | Huang J, Zhou Q. Gene biomarkers related to Th17 cells in macular edema of diabetic retinopathy: cutting-edge comprehensive bioinformatics analysis and in vivo validation[J/OL]. Front Immunol, 2022, 13: 858972[2022-05-16]. https://pubmed.ncbi.nlm.nih.gov/35651615/. DOI: 10.3389/fimmu.2022.858972. |
49. | Larabee CM, Hu Y, Desai S, et al. Myelin-specific Th17 cells induce severe relapsing optic neuritis with irreversible loss of retinal ganglion cells in C57BL/6 mice[J]. Mol Vis, 2016, 22: 332-341. |
50. | Ren Y, Qi Y, Su X. Th17 cells in glaucoma patients promote Ig production in IL-17A and IL-21-dependent manner[J]. Clin Exp Pharmacol Physiol, 2019, 46(10): 875-882. DOI: 10.1111/1440-1681.13141. |
51. | Qiu AW, Bian Z, Mao PA, et al. IL-17A exacerbates diabetic retinopathy by impairing Müller cell function via Act1 signaling[J/OL]. Exp Mol Med, 2016, 48(12): e280-e280[2016-12-16]. https://pubmed.ncbi.nlm.nih.gov/27980343/. DOI: 10.1038/emm.2016.117. |
52. | Li X, Qin W, Qin X, et al. Meta-analysis of the relationship between ocular and peripheral serum IL-17A and diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2024, 15: 1320632[2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/38711982/. DOI: 10.3389/fendo.2024.1320632. |
53. | Hang H, Yuan S, Yang Q, et al. Multiplex bead array assay of plasma cytokines in type 2 diabetes mellitus with diabetic retinopathy[J]. Mol Vis, 2014, 20: 1137-1145. |
54. | Mason RH, Minaker SA, Lahaie Luna G, et al. Changes in aqueous and vitreous inflammatory cytokine levels in nonproliferative diabetic retinopathy: systematic review and meta-analysis[J/OL]. Can J Ophthalmol, 2025, 60(1): e100-e116[2024-07-21]. https://pubmed.ncbi.nlm.nih.gov/39043257/. DOI: 10.1016/j.jcjo.2024.05.031. |
55. | Sun L, Wang R, Hu G, et al. Single cell RNA sequencing (scRNA-Seq) deciphering pathological alterations in streptozotocin-induced diabetic retinas[J/OL]. Exp Eye Res, 2021, 210: 108718[2021-08-06]. https://pubmed.ncbi.nlm.nih.gov/34364890/. DOI: 10.1016/j.exer.2021.108718. |
56. | Byrne EM, Llorián-Salvador M, Tang M, et al. IL-17A damages the blood-retinal barrier through activating the janus kinase 1 pathway[J/OL]. Biomedicines, 2021, 9(7): 831[2021-07-16]. https://pubmed.ncbi.nlm.nih.gov/34356895/. DOI: 10.3390/biomedicines9070831. |
57. | Zhou AY, Taylor BE, Barber KG, et al. Anti-IL17A halts the onset of diabetic retinopathy in type I and II diabetic mice[J/OL]. Int J Mol Sci, 2023, 24(2): 1347[2023-01-10]. https://pubmed.ncbi.nlm.nih.gov/36674854/. DOI: 10.3390/ijms24021347. |
58. | Qiu AW, Wang NY, Yin WJ, et al. Retinal Müller cell-released exosomal MiR-92a-3p delivers interleukin-17A signal by targeting Notch-1 to promote diabetic retinopathy[J/OL]. Invest Ophthalmol Vis Sci, 2025, 66(1): 1[2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/39745681/. DOI: 10.1167/iovs.66.1.1. |
59. | Knier B, Rothhammer V, Heink S, et al. Neutralizing IL-17 protects the optic nerve from autoimmune pathology and prevents retinal nerve fiber layer atrophy during experimental autoimmune encephalomyelitis[J]. J Autoimmun, 2015, 56: 34-44. DOI: 10.1016/j.jaut.2014.09.003. |
60. | Fernández-Albarral JA, Salazar JJ, De Hoz R, et al. Retinal molecular changes are associated with neuroinflammation and loss of RGCs in an experimental model of glaucoma[J/OL]. Int J Mol Sci, 2021, 22(4): 2066[2021-02-19]. https://pubmed.ncbi.nlm.nih.gov/33669765/. DOI: 10.3390/ijms22042066. |
61. | Zheng Y, Mou Z, Tan S, et al. IL-17A enhances the inflammatory response of glaucoma through Act1/TRAF6/NF-κB pathway[J/OL]. Neurochem Int, 2024, 178: 105787[2024-06-01]. https://pubmed.ncbi.nlm.nih.gov/38830510/. DOI: 10.1016/j.neuint.2024.105787. |
62. | Taylor BE, Lee CA, Zapadka TE, et al. IL-17A enhances retinal neovascularization[J/OL]. Int J Mol Sci, 2023, 24(2): 1747[2023-01-16]. https://pubmed.ncbi.nlm.nih.gov/36675261/. DOI: 10.3390/ijms24021747. |
63. | Agrawal M, Rasiah PK, Bajwa A, et al. Mesenchymal stem cell induced Foxp3(+) Treg suppress effector T cells and protect against retinal ischemic injury[J/OL]. Cells, 2021, 10(11): 3006[2021-11-04]. https://pubmed.ncbi.nlm.nih.gov/34831229/. DOI: 10.3390/cells10113006. |
64. | Horie S, Sugita S, Futagami Y, et al. Human retinal pigment epithelium-induced CD4+CD25+ regulatory T cells suppress activation of intraocular effector T cells[J]. Clin Immunol, 2010, 136(1): 83-95. DOI: 10.1016/j.clim.2010.03.001. |
65. | Geng Y, Lu Z, Guan J, et al. Microglia/macrophages and CD4+CD25+ T cells enhance the ability of injury-activated lymphocytes to reduce traumatic optic neuropathy in vitro[J/OL]. Front Immunol, 2021, 12: 687898[2021-08-13]. https://pubmed.ncbi.nlm.nih.gov/34484185/. DOI: 10.3389/fimmu.2021.687898. |
66. | Deliyanti D, Talia DM, Zhu T, et al. Foxp3+ Treg are recruited to the retina to repair pathological angiogenesis[J/OL]. Nat Commun, 2017, 8(1): 748[2017-09-29]. https://pubmed.ncbi.nlm.nih.gov/34484185/. DOI: 10.1038/s41467-017-00751-w. |
67. | Carden SM. Tregs that express the Foxp3 transcription factor can influence oxygen-induced retinopathy[J/OL]. Surv Ophthalmol, 2018, 63(3): 446[2017-12-15]. https://pubmed.ncbi.nlm.nih.gov/29248531/. DOI: 10.1016/j.survophthal.2017.12.005. |
68. | Potilinski MC, Lorenc V, Perisset S, et al. Mechanisms behind retinal ganglion cell loss in diabetes and therapeutic approach[J/OL]. Int J Mol Sci, 2020, 21(7): 2351[2020-03-28]. https://pubmed.ncbi.nlm.nih.gov/32231131/. DOI: 10.3390/ijms21072351. |
69. | Tosi GM, Orlandini M, Galvagni F. The controversial role of TGF-β in neovascular age-related macular degeneration pathogenesis[J/OL]. Int J Mol Sci, 2018, 19(11): 3363[2018-10-27]. https://pubmed.ncbi.nlm.nih.gov/30373226/. DOI: 10.3390/ijms19113363. |
70. | Walshe TE, Leach LL, D'Amore PA. TGF-β signaling is required for maintenance of retinal ganglion cell differentiation and survival[J]. Neuroscience, 2011, 189: 123-131. DOI: 10.1016/j.neuroscience.2011.05.020. |
71. | Chen HY, Ho YJ, Chou HC, et al. The role of transforming growth factor-beta in retinal ganglion cells with hyperglycemia and oxidative stress[J/OL]. Int J Mol Sci, 2020, 21(18): 6482[2020-09-04]. https://pubmed.ncbi.nlm.nih.gov/32899874/. DOI: 10.3390/ijms21186482. |
72. | Shepard AR, Millar JC, Pang IH, et al. Adenoviral gene transfer of active human transforming growth factor-β2 elevates intraocular pressure and reduces outflow facility in rodent eyes[J]. Invest Ophthalmol Vis Sci, 2010, 51(4): 2067-2076. DOI: 10.1167/iovs.09-4567. |
73. | Honjo M, Tanihara H. Impact of the clinical use of ROCK inhibitor on the pathogenesis and treatment of glaucoma[J]. Jpn J Ophthalmol, 2018, 62(2): 109-126. DOI: 10.1007/s10384-018-0566-9. |
- 1. Osborne NN, Casson RJ, Wood JPM, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies[J]. Prog Retin Eye Res, 2004, 23(1): 91-147. DOI: 10.1016/j.preteyeres.2003.12.001.
- 2. Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice[J]. Trends Neurosci, 2024, 47(12): 994-1013. DOI: 10.1016/j.tins.2024.09.010.
- 3. Huang P, Huo Y, Lou LX, et al. CD4 positive T helper cells contribute to retinal ganglion cell death in mouse model of ischemia reperfusion injury[J/OL]. Exp Eye Res, 2013, 115: 131-139[2013-06-20]. https://pubmed.ncbi.nlm.nih.gov/23792169/. DOI: 10.1016/j.exer.2013.06.015.
- 4. Khanh Vu TH, Chen H, Pan L, et al. CD4+ T-cell responses mediate progressive neurodegeneration in experimental ischemic retinopathy[J/OL]. Am J Pathol, 2020, 190(8): 1723-1734[2020-05-08]. https://pubmed.ncbi.nlm.nih.gov/32389572/. DOI: 10.1016/j.ajpath.2020.04.011.
- 5. He C, Peng K, Zhu X, et al. Th1 cells contribute to retinal ganglion cell loss in glaucoma in a VCAM-1-dependent manner[J/OL]. J Neuroinflammation, 2024, 21(1): 43[2024-02-05]. https://pubmed.ncbi.nlm.nih.gov/38317227/. DOI: 10.1186/s12974-024-03035-5.
- 6. Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol, 1986, 136(7): 2348-2357. DOI: 10.4049/jimmunol.136.7.2348.
- 7. 程丽娜, 钱韶红, 孙兴怀, 等. 多聚物-1免疫高眼压大鼠视网膜中助性T细胞的变化[J]. 中华医学杂志, 2011, 91(39): 2789-2792. DOI: 10.3760/cma.j.issn.0376-2491.2011.39.016.Cheng LN, Qian SH, Sun XH, et al. Expressional changes of Th1 and Th2 cells in retina of a rat glaucoma model vaccinated by Cop-1[J]. Natl Med J China, 2011, 91(39): 2789-2792. DOI: 10.3760/cma.j.issn.0376-2491.2011.39.016.
- 8. Saini C, Jiang S, Devlin J, et al. Association between heat shock protein-specific T-cell counts and retinal nerve fiber layer thickness in patients with primary open-angle glaucoma[J/OL]. Ophthalmol Sci, 2023, 3(3): 100310[2023-04-17]. https://pubmed.ncbi.nlm.nih.gov/37197701/. DOI: 10.1016/j.xops.2023.100310.
- 9. Chen H, Cho KS, Vu THK, et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma[J/OL]. Nat Commun, 2018, 9(1): 3209[2018-08-10]. https://pubmed.ncbi.nlm.nih.gov/30097565/. DOI: 10.1038/s41467-018-05681-9.
- 10. Zhu X, Zhu J. CD4 T helper cell subsets and related human immunological disorders[J/OL]. Int J Mol Sci, 2020, 21(21): 8011[2020-10-28]. https://pubmed.ncbi.nlm.nih.gov/33126494/. DOI: 10.3390/ijms21218011.
- 11. Yao B, Xin ZK, Wang D. The effect of curcumin on on intravitreal proinflammatory cytokines, oxidative stress markers, and vascular endothelial growth factor in an experimental model of diabetic retinopathy[J/OL]. J Physiol Pharmacol, 2023, 74(6): 10[2024-02-07]. https://pubmed.ncbi.nlm.nih.gov/38345446/. DOI: 10.26402/jpp.2023.6.07.
- 12. Zhou LY, Liu ZG, Sun YQ, et al. Preserving blood-retinal barrier integrity: a path to retinal ganglion cell protection in glaucoma and traumatic optic neuropathy[J/OL]. Cell Regen, 2025, 14(1): 13[2025-04-02]. https://pubmed.ncbi.nlm.nih.gov/40172766/. DOI: 10.1186/s13619-025-00228-y.
- 13. Eshaq RS, Harris NR. The role of tumor necrosis factor‐α and interferon‐γ in the hyperglycemia‐induced ubiquitination and loss of platelet endothelial cell adhesion molecule-1 in rat retinal endothelial cells[J/OL]. Microcirculation, 2021, 28(7): e12717[2021-05-29]. https://pubmed.ncbi.nlm.nih.gov/34008903/. DOI: 10.1111/micc.12717.
- 14. Dharmarajan S, Carrillo C, Qi Z, et al. Retinal inflammation in murine models of type 1 and type 2 diabetes with diabetic retinopathy[J]. Diabetologia, 2023, 66(11): 2170-2185. DOI: 10.1007/s00125-023-05995-4.
- 15. Mason RH, Minaker SA, Lahaie Luna G, et al. Changes in aqueous and vitreous inflammatory cytokine levels in proliferative diabetic retinopathy: a systematic review and meta-analysis[J/OL]. Eye, 2022, 2019: E1(2025-06-09)[2022-06-07]. https://pubmed.ncbi.nlm.nih.gov/35672457/. DOI: 10.1038/s41433-022-02127-x.[published online ahead of print].
- 16. Yang J, Patil RV, Yu H, et al. T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma[J]. Am J Ophthalmol, 2001, 131(4): 421-426. DOI: 10.1016/S0002-9394(00)00862-X.
- 17. Husain S, Abdul Y, Webster C, et al. Interferon-Gamma (IFN-γ)-mediated retinal ganglion cell death in human tyrosinase T cell receptor transgenic mouse[J/OL]. PLoS One, 2014, 9(2): e89392[2014-02-28]. https://pubmed.ncbi.nlm.nih.gov/24586745/. DOI: 10.1371/journal.pone.0089392.
- 18. Li Q, Cheng Y, Zhang S, et al. TRPV4-induced Müller cell gliosis and TNF-αelevation-mediated retinal ganglion cell apoptosis in glaucomatous rats via JAK2/STAT3/NF-κB pathway[J/OL]. J Neuroinflammation, 2021, 18(1): 271[2021-11-17]. https://pubmed.ncbi.nlm.nih.gov/34789280/. DOI: 10.1186/s12974-021 -02315-8.
- 19. Stritesky GL, Muthukrishnan R, Sehra S, et al. The transcription factor STAT3 is required for T helper 2 cell development[J]. Immunity, 2011, 34(1): 39-49. DOI: 10.1016/j.immuni.2010.12.013.
- 20. Zuo Z, Fan B, Zhang Z, et al. Interleukin-4 protects retinal ganglion cells and promotes axon regeneration[J/OL]. Cell Commun Signal, 2024, 22(1): 236[2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/38650003/. DOI: 10.1186/s12964-024-01604-y.
- 21. Shi H, Berger EA. Characterization of site-specific phosphorylation of NF-κB p65 in retinal cells in response to high glucose and cytokine polarization[J/OL]. Mediators Inflamm, 2018, 2018: 3020675[2018-04-26]. https://pubmed.ncbi.nlm.nih.gov/29853786/. DOI: 10.1155/2018/3020675.
- 22. Dai L, Luo L, Zhang Y, et al. Protective effect of Apelin-13 on oxygen and glucose deprivation induced-damage in retinal ganglion cells cultured in vitro[J/OL]. J Mol Histol, 2025, 56(1): 25[2024-12-04]. https://pubmed.ncbi.nlm.nih.gov/39627585/. DOI: 10.1007/s10735-024-10279-1.
- 23. Yuan Y, Shao L. Germacrone protects against NF-κB-mediated inflammatory signaling, apoptosis, and retinal ganglion cell survival in a rat glaucoma model[J]. Tohoku J Exp Med, 2024, 263(3): 185-193. DOI: 10.1620/tjem.2024.J028.
- 24. Yong Lee I, Kim J, Ko EM, et al. Interleukin-4 inhibits the vascular endothelial growth factor- and basic fibroblast growth factor-induced angiogenesis in vitro[J]. Mol Cells, 2002, 14(1): 115-121. DOI: 10.1016/S1016-8478(23)15081-3.
- 25. Wu H, Hwang DK, Song X, et al. Association between aqueous cytokines and diabetic retinopathy stage[J/OL]. J Ophthalmol, 2017, 2017: 9402198[2017-06-07]. https://pubmed.ncbi.nlm.nih.gov/28680705/. DOI: 10.1155/2017/9402198.
- 26. Guo R, Zhang Y, Geng Y, et al. Electroacupuncture ameliorates inflammatory response induced by retinal ischemia-reperfusion injury and protects the retina through the DOR-BDNF/Trkb pathway[J/OL]. Front Neuroanat, 2023, 16: 1057929[2023-01-05]. https://pubmed.ncbi.nlm.nih.gov/36686575/. DOI: 10.3389/fnana.2022.1057929.
- 27. Chen D, Peng C, Ding XM, et al. Interleukin-4 promotes microglial polarization toward a neuroprotective phenotype after retinal ischemia/reperfusion injury[J]. Neural Regen Res, 2022, 17(12): 2755-2760. DOI: 10.4103/1673-5374.339500.
- 28. Goit RK, Taylor AW, Lo ACY. Anti-inflammatory α-Melanocyte-stimulating hormone protects retina after ischemia/reperfusion injury in type I diabetes[J/OL]. Front Neurosci, 2022, 16: 799739[2022-02-25]. https://pubmed.ncbi.nlm.nih.gov/35281489/. DOI: 10.3389/fnins.2022.799739.
- 29. Dong N, Xu B, Wang B, et al. Study of 27 aqueous humor cytokines in patients with type 2 diabetes with or without retinopathy[J]. Mol Vis, 2013, 19: 1734-1746.
- 30. Song S, Yu X, Zhang P, et al. Increased levels of cytokines in the aqueous humor correlate with the severity of diabetic retinopathy[J/OL]. J Diabetes Complications, 2020, 34(9): 107641[2020-05-30]. https://pubmed.ncbi.nlm.nih.gov/32605862/. DOI: 10.1016/j.jdiacomp.2020.107641.
- 31. Golshan-Tafti A, Bahrami M, Mohsenzadeh-Yazdi R, et al. Consolidating data on the association of IL-6 and IL-10 polymorphisms with the development of glaucoma: a meta-analysis[J]. Ophthalmic Genet, 2024, 45(4): 321-331. DOI: 10.1080/13816810.2024.2336964.
- 32. Feng Z, Yang Y, Shi CX, et al. Salidroside ameliorates diabetic retinopathy and Müller cell inflammation via the PI3K/Akt/GSK-3β/NF-κB pathway[J]. Mol Vis, 2024, 30: 1-16.
- 33. Feng S, Yu H, Yu Y, et al. Levels of inflammatory cytokines IL-1 β, IL-6, IL-8, IL-17A, and TNF- α in aqueous humour of patients with diabetic retinopathy[J/OL]. J Diabetes Res, 2018, 2018: 8546423[2018-04-04]. https://pubmed.ncbi.nlm.nih.gov/29850610/. DOI: 10.1155/2018/8546423.
- 34. Xiao R, Lei C, Zhang Y, et al. Interleukin-6 in retinal diseases: From pathogenesis to therapy[J/OL]. Exp Eye Res, 2023, 233: 109556[2023-06-27]. https://pubmed.ncbi.nlm.nih.gov/37385535/. DOI: 10.1016/j.exer.2023.109556.
- 35. Ulhaq ZS, Istifiani LA, Pamungkas SA. Evaluation of systemic IL-6 trans-signalling in patients with primary open-angle glaucoma[J]. J Fr Ophtalmol, 2023, 46(6): 622-629. DOI: 10.1016/j.jfo.2022.11.022.
- 36. Echevarria FD, Formichella CR, Sappington RM. Interleukin-6 deficiency attenuates retinal ganglion cell axonopathy and glaucoma-related vision loss[J/OL]. Front Neurosci, 2017, 11: 318[2017-05-31]. https://pubmed.ncbi.nlm.nih.gov/28620279/. DOI: 10.3389/fnins.2017.00318.
- 37. Liton PB, Luna C, Bodman M, et al. Induction of IL-6 expression by mechanical stress in the trabecular meshwork[J]. Biochem Biophys Res Commun, 2005, 337(4): 1229-1236. DOI: 10.1016/j.bbrc.2005.09.182.
- 38. Leibinger M, Andreadaki A, Gobrecht P, et al. Boosting central nervous system axon regeneration by circumventing limitations of natural cytokine signaling[J]. Mol Ther, 2016, 24(10): 1712-1725. DOI: 10.1038/mt.2016.102.
- 39. Fishman MA, Perelson AS. Th1/Th2 cross regulation[J/OL]. J Theor Biol, 1994, 170(1): 25-56[1994-09-07]. https://pubmed.ncbi.nlm.nih.gov/7967633/. DOI: 10.1006/jtbi.1994.1166.
- 40. Cao YL, Zhang FQ, Hao FQ. Th1/Th2 cytokine expression in diabetic retinopathy[J/OL]. Genet Mol Res, 2016, 15(3): gmr. 15037311[2016-07-15]. https://pubmed.ncbi.nlm.nih.gov/27525838/. DOI: 10.4238/gmr.15037311.
- 41. Kaviarasan K, Jithu M, Arif Mulla M, et al. Low blood and vitreal BDNF, LXA4 and altered Th1/Th2 cytokine balance are potential risk factors for diabetic retinopathy[J]. Metabolism, 2015, 64(9): 958-966. DOI: 10.1016/j.metabol.2015.04.005.
- 42. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11): 1123-1132. DOI: 10.1038/ni1254.
- 43. Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases[J]. Semin Immunopathol, 2019, 41(3): 283-297. DOI: 10.1007/s00281-019-00733-8.
- 44. Mickael ME, Kubick N, Miftari K, et al. The role of Th17/Treg axis in retinal pathology associated with diabetes and treatment options[J/OL]. Biology, 2025, 14(3): 275[2025-03-07]. https://pubmed.ncbi.nlm.nih.gov/40136531/. DOI: 10.3390/biology14030275.
- 45. Bharadwaj AS, Schewitz-Bowers LP, Wei L, et al. Intercellular adhesion molecule 1 mediates migration of Th1 and Th17 cells across human retinal vascular endothelium[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 6917-6925. DOI: 10.1167/iovs.13-12058.
- 46. Pan L, Sze YH, Yang M, et al. Baicalein—a potent pro-homeostatic regulator of microglia in retinal ischemic injury[J/OL]. Front Immunol, 2022, 13: 837497[2022-02-21]. https://pubmed.ncbi.nlm.nih.gov/35265083/. DOI: 10.3389/fimmu.2022.837497.
- 47. Zapadka TE, Lindstrom SI, Batoki JC, et al. Aryl hydrocarbon receptor agonist VAF347 impedes retinal pathogenesis in diabetic mice[J/OL]. Int J Mol Sci, 2021, 22(9): 4335[2021-04-21]. https://pubmed.ncbi.nlm.nih.gov/33919327/. DOI: 10.3390/ijms22094335.
- 48. Huang J, Zhou Q. Gene biomarkers related to Th17 cells in macular edema of diabetic retinopathy: cutting-edge comprehensive bioinformatics analysis and in vivo validation[J/OL]. Front Immunol, 2022, 13: 858972[2022-05-16]. https://pubmed.ncbi.nlm.nih.gov/35651615/. DOI: 10.3389/fimmu.2022.858972.
- 49. Larabee CM, Hu Y, Desai S, et al. Myelin-specific Th17 cells induce severe relapsing optic neuritis with irreversible loss of retinal ganglion cells in C57BL/6 mice[J]. Mol Vis, 2016, 22: 332-341.
- 50. Ren Y, Qi Y, Su X. Th17 cells in glaucoma patients promote Ig production in IL-17A and IL-21-dependent manner[J]. Clin Exp Pharmacol Physiol, 2019, 46(10): 875-882. DOI: 10.1111/1440-1681.13141.
- 51. Qiu AW, Bian Z, Mao PA, et al. IL-17A exacerbates diabetic retinopathy by impairing Müller cell function via Act1 signaling[J/OL]. Exp Mol Med, 2016, 48(12): e280-e280[2016-12-16]. https://pubmed.ncbi.nlm.nih.gov/27980343/. DOI: 10.1038/emm.2016.117.
- 52. Li X, Qin W, Qin X, et al. Meta-analysis of the relationship between ocular and peripheral serum IL-17A and diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2024, 15: 1320632[2024-04-22]. https://pubmed.ncbi.nlm.nih.gov/38711982/. DOI: 10.3389/fendo.2024.1320632.
- 53. Hang H, Yuan S, Yang Q, et al. Multiplex bead array assay of plasma cytokines in type 2 diabetes mellitus with diabetic retinopathy[J]. Mol Vis, 2014, 20: 1137-1145.
- 54. Mason RH, Minaker SA, Lahaie Luna G, et al. Changes in aqueous and vitreous inflammatory cytokine levels in nonproliferative diabetic retinopathy: systematic review and meta-analysis[J/OL]. Can J Ophthalmol, 2025, 60(1): e100-e116[2024-07-21]. https://pubmed.ncbi.nlm.nih.gov/39043257/. DOI: 10.1016/j.jcjo.2024.05.031.
- 55. Sun L, Wang R, Hu G, et al. Single cell RNA sequencing (scRNA-Seq) deciphering pathological alterations in streptozotocin-induced diabetic retinas[J/OL]. Exp Eye Res, 2021, 210: 108718[2021-08-06]. https://pubmed.ncbi.nlm.nih.gov/34364890/. DOI: 10.1016/j.exer.2021.108718.
- 56. Byrne EM, Llorián-Salvador M, Tang M, et al. IL-17A damages the blood-retinal barrier through activating the janus kinase 1 pathway[J/OL]. Biomedicines, 2021, 9(7): 831[2021-07-16]. https://pubmed.ncbi.nlm.nih.gov/34356895/. DOI: 10.3390/biomedicines9070831.
- 57. Zhou AY, Taylor BE, Barber KG, et al. Anti-IL17A halts the onset of diabetic retinopathy in type I and II diabetic mice[J/OL]. Int J Mol Sci, 2023, 24(2): 1347[2023-01-10]. https://pubmed.ncbi.nlm.nih.gov/36674854/. DOI: 10.3390/ijms24021347.
- 58. Qiu AW, Wang NY, Yin WJ, et al. Retinal Müller cell-released exosomal MiR-92a-3p delivers interleukin-17A signal by targeting Notch-1 to promote diabetic retinopathy[J/OL]. Invest Ophthalmol Vis Sci, 2025, 66(1): 1[2025-01-02]. https://pubmed.ncbi.nlm.nih.gov/39745681/. DOI: 10.1167/iovs.66.1.1.
- 59. Knier B, Rothhammer V, Heink S, et al. Neutralizing IL-17 protects the optic nerve from autoimmune pathology and prevents retinal nerve fiber layer atrophy during experimental autoimmune encephalomyelitis[J]. J Autoimmun, 2015, 56: 34-44. DOI: 10.1016/j.jaut.2014.09.003.
- 60. Fernández-Albarral JA, Salazar JJ, De Hoz R, et al. Retinal molecular changes are associated with neuroinflammation and loss of RGCs in an experimental model of glaucoma[J/OL]. Int J Mol Sci, 2021, 22(4): 2066[2021-02-19]. https://pubmed.ncbi.nlm.nih.gov/33669765/. DOI: 10.3390/ijms22042066.
- 61. Zheng Y, Mou Z, Tan S, et al. IL-17A enhances the inflammatory response of glaucoma through Act1/TRAF6/NF-κB pathway[J/OL]. Neurochem Int, 2024, 178: 105787[2024-06-01]. https://pubmed.ncbi.nlm.nih.gov/38830510/. DOI: 10.1016/j.neuint.2024.105787.
- 62. Taylor BE, Lee CA, Zapadka TE, et al. IL-17A enhances retinal neovascularization[J/OL]. Int J Mol Sci, 2023, 24(2): 1747[2023-01-16]. https://pubmed.ncbi.nlm.nih.gov/36675261/. DOI: 10.3390/ijms24021747.
- 63. Agrawal M, Rasiah PK, Bajwa A, et al. Mesenchymal stem cell induced Foxp3(+) Treg suppress effector T cells and protect against retinal ischemic injury[J/OL]. Cells, 2021, 10(11): 3006[2021-11-04]. https://pubmed.ncbi.nlm.nih.gov/34831229/. DOI: 10.3390/cells10113006.
- 64. Horie S, Sugita S, Futagami Y, et al. Human retinal pigment epithelium-induced CD4+CD25+ regulatory T cells suppress activation of intraocular effector T cells[J]. Clin Immunol, 2010, 136(1): 83-95. DOI: 10.1016/j.clim.2010.03.001.
- 65. Geng Y, Lu Z, Guan J, et al. Microglia/macrophages and CD4+CD25+ T cells enhance the ability of injury-activated lymphocytes to reduce traumatic optic neuropathy in vitro[J/OL]. Front Immunol, 2021, 12: 687898[2021-08-13]. https://pubmed.ncbi.nlm.nih.gov/34484185/. DOI: 10.3389/fimmu.2021.687898.
- 66. Deliyanti D, Talia DM, Zhu T, et al. Foxp3+ Treg are recruited to the retina to repair pathological angiogenesis[J/OL]. Nat Commun, 2017, 8(1): 748[2017-09-29]. https://pubmed.ncbi.nlm.nih.gov/34484185/. DOI: 10.1038/s41467-017-00751-w.
- 67. Carden SM. Tregs that express the Foxp3 transcription factor can influence oxygen-induced retinopathy[J/OL]. Surv Ophthalmol, 2018, 63(3): 446[2017-12-15]. https://pubmed.ncbi.nlm.nih.gov/29248531/. DOI: 10.1016/j.survophthal.2017.12.005.
- 68. Potilinski MC, Lorenc V, Perisset S, et al. Mechanisms behind retinal ganglion cell loss in diabetes and therapeutic approach[J/OL]. Int J Mol Sci, 2020, 21(7): 2351[2020-03-28]. https://pubmed.ncbi.nlm.nih.gov/32231131/. DOI: 10.3390/ijms21072351.
- 69. Tosi GM, Orlandini M, Galvagni F. The controversial role of TGF-β in neovascular age-related macular degeneration pathogenesis[J/OL]. Int J Mol Sci, 2018, 19(11): 3363[2018-10-27]. https://pubmed.ncbi.nlm.nih.gov/30373226/. DOI: 10.3390/ijms19113363.
- 70. Walshe TE, Leach LL, D'Amore PA. TGF-β signaling is required for maintenance of retinal ganglion cell differentiation and survival[J]. Neuroscience, 2011, 189: 123-131. DOI: 10.1016/j.neuroscience.2011.05.020.
- 71. Chen HY, Ho YJ, Chou HC, et al. The role of transforming growth factor-beta in retinal ganglion cells with hyperglycemia and oxidative stress[J/OL]. Int J Mol Sci, 2020, 21(18): 6482[2020-09-04]. https://pubmed.ncbi.nlm.nih.gov/32899874/. DOI: 10.3390/ijms21186482.
- 72. Shepard AR, Millar JC, Pang IH, et al. Adenoviral gene transfer of active human transforming growth factor-β2 elevates intraocular pressure and reduces outflow facility in rodent eyes[J]. Invest Ophthalmol Vis Sci, 2010, 51(4): 2067-2076. DOI: 10.1167/iovs.09-4567.
- 73. Honjo M, Tanihara H. Impact of the clinical use of ROCK inhibitor on the pathogenesis and treatment of glaucoma[J]. Jpn J Ophthalmol, 2018, 62(2): 109-126. DOI: 10.1007/s10384-018-0566-9.