- 1. Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- 2. Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China;
Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes, characterized by high blindness rates and a severe impact on patients' quality of life. Despite adequate glycemic control, some patients exhibit persistent progression of retinal microvascular damage, known as the "metabolic memory" phenomenon. Studies have revealed that the essence of this phenomenon is the sustained expression of epigenetic reprogramming induced by metabolic stress, in which abnormal mitochondrial DNA (mtDNA) methylation plays a pivotal role. Metabolic abnormalities such as hyperglycemia, hyperhomocysteinemia, and hyperlipidemia can alter mtDNA methylation patterns, triggering cascading pathological processes including oxidative stress, chronic inflammation, and neurovascular network disorders, remodeling mitochondrial energy metabolism, and promoting the evolution of DR from subclinical compensatory stage to irreversible structural damage. Abnormal mtDNA methylation serves as a hallmark of metabolic memory and a core driver of microvascular lesions, providing an important theoretical basis for in-depth analysis of metabolic memory mechanisms and exploration of DR intervention strategies. Current research needs to further elucidate its role in DR. Future efforts require integration of multi-dimensional epigenetic biomarkers, precise intervention approaches, and clinical translational research to advance the early diagnosis and individualized treatment of DR.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Xu Y, Lu J, Li M, et al. Diabetes in China part 1: epidemiology and risk factors[J/OL]. Lancet Public Health, 2024, 9(12): e1089-e1097[2024-11-20]. https://pubmed.ncbi.nlm.nih.gov/39579774/. DOI: 10.1016/S2468-2667(24)00250-0. |
2. | Kowluru RA, Mohammad G. Epigenetics and mitochondrial stability in the metabolic memory phenomenon associated with continued progression of diabetic retinopathy[J/OL]. Sci Rep, 2020, 10(1): 6655[2020-04-20]. https://pubmed.ncbi.nlm.nih.gov/32313015/. DOI: 10.1038/s41598-020-63527-1. |
3. | Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study[J]. JAMA, 2003, 290(16): 2159-2167. DOI: 10.1001/jama.290.16.2159. |
4. | Kowluru RA, Alka K. Mitochondrial quality control and metabolic memory phenomenon associated with continued progression of diabetic retinopathy[J/OL]. Int J Mol Sci, 2023, 24(9): 8076[2023-04-29]. https://pubmed.ncbi.nlm.nih.gov/37175784/. DOI: 10.3390/ijms24098076. |
5. | Tewari S, Zhong Q, Santos JM, et al. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 4881-4888. DOI: 10.1167/iovs.12-9732. |
6. | Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria[J]. Cell, 2003, 115(5): 629-640. DOI: 10.1016/s0092-8674(03)00926-7. |
7. | Stoccoro A, Coppedè F. Mitochondrial DNA methylation and human diseases[J/OL]. Int J Mol Sci, 2021, 22(9): 4594[2021-04-27]. https://pubmed.ncbi.nlm.nih.gov/33925624/. DOI: 10.3390/ijms22094594. |
8. | Song J, Zhao A, Li R, et al. Association of PPARGC1A gene polymorphism and mtDNA methylation with coal-burning fluorosis: a case-control study[J/OL]. BMC Genomics, 2024, 25(1): 908[2024-09-30]. https://pubmed.ncbi.nlm.nih.gov/39350036/. DOI: 10.1186/s12864-024-10819-9. |
9. | Hao Z, Wu T, Cui X, et al. N6-deoxyadenosine methylation in mammalian mitochondrial DNA[J]. Mol Cell, 2020, 78(3): 382-395. DOI: 10.1016/j.molcel.2020.02.018. |
10. | Cramer-Morales KL, Heer CD, Mapuskar KA, et al. Succinate accumulation links mitochondrial MnSOD depletion to aberrant nuclear DNA methylation and altered cell fate[J]. J Exp Pathol (Wilmington), 2020, 1(2): 60-70. |
11. | Yumnamcha T, Guerra M, Singh LP, et al. Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy[J/OL]. Antioxidants (Basel), 2020, 9(12): 1244[2020-12-08]. https://pubmed.ncbi.nlm.nih.gov/33302369/. DOI: 10.3390/antiox9121244. |
12. | Quan W, Jiao Y, Xue C, et al. The effect of exogenous free Nε-(carboxymethyl) lysine on diabetic-model goto-kakizaki rats: metabolomics analysis in serum and urine[J]. J Agric Food Chem, 2021, 69(2): 783-793. DOI: 10.1021/acs.jafc.0c06445. |
13. | Wang Y, Zhang Y, Chen K, et al. Insufficient S-adenosylhomocysteine hydrolase compromises the beneficial effect of diabetic BMSCs on diabetic cardiomyopathy[J/OL]. Stem Cell Res Ther, 2022, 13(1): 418[2022-08-13]. https://pubmed.ncbi.nlm.nih.gov/35964109/. DOI: 10.1186/s13287-022-03099-1. |
14. | Lu L, Ning Y, Gu F, et al. The circular RNA circSLC16A10 alleviates diabetic retinopathy by improving mitochondrial function via the miR-761-5p/MFN2 axis[J/OL]. Cell Signal, 2024, 121: 111283[2024-07-02]. https://pubmed.ncbi.nlm.nih.gov/38960059/. DOI: 10.1016/j.cellsig.2024.111283. |
15. | Kasai S, Shimizu S, Tatara Y, et al. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology[J/OL]. Biomolecules, 2020, 10(2): 320[2020-05-17]. https://pubmed.ncbi.nlm.nih.gov/32079324/. DOI: 10.3390/biom10020320. |
16. | Kowluru RA, Mohammad G. Mitochondrial fragmentation in a high homocysteine environment in diabetic retinopathy[J/OL]. Antioxidants (Basel), 2022, 11(2): 365[2022-02-11]. https://pubmed.ncbi.nlm.nih.gov/35204246/. DOI: 10.3390/antiox11020365. |
17. | Choi SW, Friso S. Modulation of DNA methylation by one-carbon metabolism: a milestone for healthy aging[J]. Nutr Res Pract, 2023, 17(4): 597-615. DOI: 10.4162/nrp.2023.17.4.597. |
18. | Mohammad G, Kowluru RA. Homocysteine disrupts balance between MMP-9 and its tissue inhibitor in diabetic retinopathy: the role of DNA methylation[J/OL]. Int J Mol Sci, 2020, 21(5): 1771[2020-03-05]. https://pubmed.ncbi.nlm.nih.gov/32150828/. DOI: 10.3390/ijms21051771. |
19. | Zhou B, Zhang JY, Liu XS, et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis[J]. Cell Res, 2018, 28(12): 1171-1185. DOI: 10.1038/s41422-018-0090-y. |
20. | Murdolo G, Bartolini D, Tortoioli C, et al. Accumulation of 4-hydroxynonenal characterizes diabetic fat and modulates adipogenic differentiation of adipose precursor cells[J/OL]. Int J Mol Sci, 2023, 24(23): 16645[2023-11-23]. https://pubmed.ncbi.nlm.nih.gov/38068967/. DOI: 10.3390/ijms242316645. |
21. | Kowluru RA. Retinopathy in a diet-induced type 2 diabetic rat model and role of epigenetic modifications[J]. Diabetes, 2020, 69(4): 689-698. DOI: 10.2337/db19-1009. |
22. | Yang HQ, Martinez-Ortiz W, Hwang J, et al. Palmitoylation of the KATP channel Kir6.2 subunit promotes channel opening by regulating PIP2 sensitivity[J]. Proc Natl Acad Sci USA, 2020, 117(19): 10593-10602. DOI: 10.1073/pnas.1918088117. |
23. | Long Q, Chen H, Yang W, et al. Delphinidin-3-sambubioside from Hibiscus sabdariffa. L attenuates hyperlipidemia in high fat diet-induced obese rats and oleic acid-induced steatosis in HepG2 cells[J]. Bioengineered, 2021, 12(1): 3837-3849. DOI: 10.1080/21655979.2021.1950259. |
24. | Cai C, Gu C, He S, et al. TET2-mediated ECM1 hypomethylation promotes the neovascularization in active proliferative diabetic retinopathy[J]. Clin Epigenetics, 2024, 16(1): 6. DOI: 10.1186/s13148-023-01619-1. |
25. | Maugeri A, Mazzone MG, Giuliano F, et al. Curcumin modulates DNA methyltransferase functions in a cellular model of diabetic retinopathy[J/OL]. Oxid Med Cell Longev, 2018, 2018: 5407482[2018-07-02]. https://pubmed.ncbi.nlm.nih.gov/30057682/. DOI: 10.1155/2018/5407482. |
26. | Zhang QA, Luo WS, Li J, et al. Integrative analysis of acupuncture targets and immune genes in diabetes, diabetic peripheral neuropathy, and adjunct therapy of cancer[J]. J Multidiscip Healthc, 2024, 17: 4939-4962. DOI: 10.2147/JMDH.S483940. |
27. | Malaviya P, Kowluru RA. Diabetic retinopathy and regulation of mitochondrial glutathione-glutathione peroxidase axis in hyperhomocysteinemia[J/OL]. Antioxidants (Basel), 2024, 13(3): 254[2024-02-20]. https://pubmed.ncbi.nlm.nih.gov/38539790/. DOI: 10.3390/antiox13030254. |
28. | Zhang SM, Fan B, Li YL, et al. Oxidative stress-involved mitophagy of retinal pigment epithelium and retinal degenerative diseases[J]. Cell Mol Neurobiol, 2023, 43(7): 3265-3276. DOI: 10.1007/s10571-023-01383-z. |
29. | Choi EH, Park SJ. TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target[J]. Exp Mol Med, 2023, 55(7): 1348-1356. DOI: 10.1038/s12276-023-01019-8. |
30. | Xian H, Karin M. Oxidized mitochondrial DNA: a protective signal gone awry[J]. Trends Immunol, 2023, 44(3): 188-200. DOI: 10.1016/j.it.2023.01.006. |
31. | Bögel G, Sváb G, Murányi J, et al. The role of PI3K-Akt-mTOR axis in Warburg effect and its modification by specific protein kinase inhibitors in human and rat inflammatory macrophAGE[J/OL]. Int Immunopharmacol, 2024, 141: 112957[2024-11-15]. https://pubmed.ncbi.nlm.nih.gov/39197292/. DOI: 10.1016/j.intimp.2024.112957. |
32. | Fan S, Tian T, Chen W, et al. Mitochondrial miRNA determines chemoresistance by reprogramming metabolism and regulating mitochondrial transcription[J]. Cancer Res, 2019, 79(6): 1069-1084. DOI: 10.1158/0008-5472.CAN-18-2505. |
33. | Duan LJ, Jiang Y, Fong GH. Endothelial HIF2α suppresses retinal angiogenesis in neonatal mice by upregulating NOTCH signaling[J/OL]. Development, 2024, 151(11): dev202802[2024-06-01]. https://pubmed.ncbi.nlm.nih.gov/38770916/. DOI: 10.1242/dev.202802. |
34. | Liu S, Zhang X, Yao X, et al. Mammalian IRE1α dynamically and functionally coalesces with stress granules[J]. Nat Cell Biol, 2024, 26(6): 917-931. DOI: 10.1038/s41556-024-01418-7. |
35. | Huang YP, Huang WW, Tsai KF, et al. CDN1163, a SERCA activator, causes intracellular Ca2+ leak, mitochondrial hyperpolarization and cell cycle arrest in mouse neuronal N2A cells[J]. Neurotoxicology, 2023, 98: 9-15. DOI: 10.1016/j.neuro.2023.07.001. |
36. | Kunze R, Fischer S, Marti HH, et al. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration[J/OL]. J Biomed Sci, 2023, 30(1): 64[2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/37550658/. DOI: 10.1186/s12929-023-00954-y. |
37. | Joe YE, Jun JH, Oh JE, et al. Damage-associated molecular patterns as a mechanism of sevoflurane-induced neuroinflammation in neonatal rodents[J]. Korean J Anesthesiol, 2024, 77(4): 468-479. DOI: 10.4097/kja.23796. |
38. | Filipowicz A, Allard P. Caenorhabditis elegans as a model for environmental epigenetics[J]. Curr Environ Health Rep, 2025, 12(1): 6. DOI: 10.1007/s40572-025-00472-z. |
39. | Wu J, Liu LL, Cao M, et al. DNA methylation plays important roles in retinal development and diseases[J/OL]. Exp Eye Res, 2021, 211: 108733[2021-08-18]. https://pubmed.ncbi.nlm.nih.gov/34418429/. DOI: 10.1016/j.exer.2021.108733. |
40. | Mohammad G, Kowluru RA. Mitochondrial dynamics in the metabolic memory of diabetic retinopathy[J/OL]. J Diabetes Res, 2022, 2022: 3555889[2022-03-31]. https://pubmed.ncbi.nlm.nih.gov/35399705/. DOI: 10.1155/2022/3555889. |
41. | Sadeghi E, Rahmanipour E, Valsecchi N, et al. An update on ocular effects of antidiabetic medications[J]. Surv Ophthalmol, 2025, 70(4): 704-712. DOI: 10.1016/j.survophthal.2025.01.010. |
42. | Mishra M, Kowluru RA. DNA methylation-a potential source of mitochondria DNA base mismatch in the development of diabetic retinopathy[J]. Mol Neurobiol, 2019, 56(1): 88-101. DOI: 10.1007/s12035-018-1086-9. |
43. | Wang X, Zhang Z, Ge YQ, et al. The effect of calcium dobesilate combined with hypoglycemic drugs in the treatment of cataract NPDR and its effect on fundus microcirculation and blood ICAM-1, MCP-1 and MIF levels[J]. J Med Biochem, 2023, 42(4): 591-599. DOI: 10.5937/jomb0-37338. |
44. | Liu J, Li S, Sun D. Calcium dobesilate and micro-vascular diseases[J]. Life Sci, 2019, 221: 348-353. DOI: 10.1016/j.lfs.2019.02.023. |
45. | Shi W, Xu G, Gao Y, et al. Novel role for epalrestat: protecting against NLRP3 inflammasome-driven NASH by targeting aldose reductase[J/OL]. J Transl Med, 2023, 21(1): 700[2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/37805545/. DOI: 10.1186/s12967-023-04380-4. |
46. | Sun Z, Wen P, Yang D, et al. Idebenone improves mitochondrial respiratory activity and attenuates oxidative damage via the SIRT3-SOD2 pathway in a prion disease cell model[J/OL]. Life Sci, 2025, 366-367: 123481[2025-04-01]. https://pubmed.ncbi.nlm.nih.gov/39983818/. DOI: 10.1016/j.lfs.2025.123481. |
47. | Suzuki K, Rao A, Onodera A. The TET-TDG axis in T cells and biological processes[J]. Int Immunol, 2025, 37(6): 299-312. DOI: 10.1093/intimm/dxaf006. |
48. | Pavlovic V, Ciric M, Petkovic M, et al. Vitamin C and epigenetics: a short physiological overview[J/OL]. Open Med (Wars), 2023, 18(1): 20230688[2023-06-22]. https://pubmed.ncbi.nlm.nih.gov/37359134/. DOI: 10.1515/med-2023-0688. |
49. | Dhat R, Mongad D, Raji S, et al. Epigenetic modifier alpha-ketoglutarate modulates aberrant gene body methylation and hydroxymethylation marks in diabetic heart[J/OL]. Epigenetics Chromatin, 2023, 16(1): 12[2023-04-27]. https://pubmed.ncbi.nlm.nih.gov/37101286/. DOI: 10.1186/s13072-023-00489-4. |
50. | Morita S, Horii T, Kimura M, et al. Synergistic upregulation of target genes by TET1 and VP64 in the dCas9-SunTag platform[J/OL]. Int J Mol Sci, 2020, 21(5): 1574[2020-02-25]. https://pubmed.ncbi.nlm.nih.gov/32106616/. DOI: 10.3390/ijms21051574. |
51. | Yano N, Fedulov AV. Targeted DNA demethylation: vectors, effectors and perspectives[J/OL]. Biomedicines, 2023, 11(5): 1334[2023-04-30]. https://pubmed.ncbi.nlm.nih.gov/37239005/. DOI: 10.3390/biomedicines11051334. |
52. | Bahardoust M, Mehrabi Y, Hadaegh F, et al. Impact of duration of treatments with metformin and sulfonylureas, individually or in combination, on diabetic retinopathy among newly diagnosed type 2 diabetic patients: a pooled cohort's analysis[J/OL]. Int J Retina Vitreous, 2025, 11(1): 9[2025-04-12]. https://pubmed.ncbi.nlm.nih.gov/39891223/. DOI: 10.1186/s40942-025-00637-w. |
53. | Wu Y, Zou H. Research progress on mitochondrial dysfunction in diabetic retinopathy[J/OL]. Antioxidants (Basel), 2022, 11(11): 2250[2022-11-15]. https://pubmed.ncbi.nlm.nih.gov/36421435/. DOI: 10.3390/antiox11112250. |
54. | Tang K, Qin W, Wei R, et al. Ginsenoside Rd ameliorates high glucose-induced retinal endothelial injury through AMPK-STRT1 interdependence[J/OL]. Pharmacol Res, 2022, 179: 106123[2022-02-09]. https://pubmed.ncbi.nlm.nih.gov/35150861/. DOI: 10.1016/j.phrs.2022.106123. |
55. | Duraisamy AJ, Radhakrishnan R, Seyoum B, et al. Epigenetic modifications in peripheral blood as potential noninvasive biomarker of diabetic retinopathy[J/OL]. Transl Vis Sci Technol, 2019, 8(6): 43[2019-12-18]. https://pubmed.ncbi.nlm.nih.gov/31871829/. DOI: 10.1167/tvst.8.6.43. |
56. | Cao K, Lv W, Wang X, et al. Hypermethylation of hepatic mitochondrial ND6 provokes systemic insulin resistance[J/OL]. Adv Sci (Weinh), 2021, 8(11): 2004507[2021-05-02]. https://pubmed.ncbi.nlm.nih.gov/34141522/. DOI: 10.1002/advs.202004507. |
57. | Kowluru RA, Kumar J, Malaviya P. DNA methylation of long noncoding RNA cytochrome B in diabetic retinopathy[J]. Noncoding RNA Res, 2025, 11: 141-149. DOI: 10.1016/j.ncrna.2024.12.007. |
58. | Constâncio V, Nunes SP, Henrique R, et al. DNA methylation-based testing in liquid biopsies as detection and prognostic biomarkers for the four major cancer types[J/OL]. Cells, 2020, 9(3): 624[2020-03-05]. https://pubmed.ncbi.nlm.nih.gov/32150897/. DOI: 10.3390/cells9030624. |
- 1. Xu Y, Lu J, Li M, et al. Diabetes in China part 1: epidemiology and risk factors[J/OL]. Lancet Public Health, 2024, 9(12): e1089-e1097[2024-11-20]. https://pubmed.ncbi.nlm.nih.gov/39579774/. DOI: 10.1016/S2468-2667(24)00250-0.
- 2. Kowluru RA, Mohammad G. Epigenetics and mitochondrial stability in the metabolic memory phenomenon associated with continued progression of diabetic retinopathy[J/OL]. Sci Rep, 2020, 10(1): 6655[2020-04-20]. https://pubmed.ncbi.nlm.nih.gov/32313015/. DOI: 10.1038/s41598-020-63527-1.
- 3. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study[J]. JAMA, 2003, 290(16): 2159-2167. DOI: 10.1001/jama.290.16.2159.
- 4. Kowluru RA, Alka K. Mitochondrial quality control and metabolic memory phenomenon associated with continued progression of diabetic retinopathy[J/OL]. Int J Mol Sci, 2023, 24(9): 8076[2023-04-29]. https://pubmed.ncbi.nlm.nih.gov/37175784/. DOI: 10.3390/ijms24098076.
- 5. Tewari S, Zhong Q, Santos JM, et al. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 4881-4888. DOI: 10.1167/iovs.12-9732.
- 6. Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria[J]. Cell, 2003, 115(5): 629-640. DOI: 10.1016/s0092-8674(03)00926-7.
- 7. Stoccoro A, Coppedè F. Mitochondrial DNA methylation and human diseases[J/OL]. Int J Mol Sci, 2021, 22(9): 4594[2021-04-27]. https://pubmed.ncbi.nlm.nih.gov/33925624/. DOI: 10.3390/ijms22094594.
- 8. Song J, Zhao A, Li R, et al. Association of PPARGC1A gene polymorphism and mtDNA methylation with coal-burning fluorosis: a case-control study[J/OL]. BMC Genomics, 2024, 25(1): 908[2024-09-30]. https://pubmed.ncbi.nlm.nih.gov/39350036/. DOI: 10.1186/s12864-024-10819-9.
- 9. Hao Z, Wu T, Cui X, et al. N6-deoxyadenosine methylation in mammalian mitochondrial DNA[J]. Mol Cell, 2020, 78(3): 382-395. DOI: 10.1016/j.molcel.2020.02.018.
- 10. Cramer-Morales KL, Heer CD, Mapuskar KA, et al. Succinate accumulation links mitochondrial MnSOD depletion to aberrant nuclear DNA methylation and altered cell fate[J]. J Exp Pathol (Wilmington), 2020, 1(2): 60-70.
- 11. Yumnamcha T, Guerra M, Singh LP, et al. Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy[J/OL]. Antioxidants (Basel), 2020, 9(12): 1244[2020-12-08]. https://pubmed.ncbi.nlm.nih.gov/33302369/. DOI: 10.3390/antiox9121244.
- 12. Quan W, Jiao Y, Xue C, et al. The effect of exogenous free Nε-(carboxymethyl) lysine on diabetic-model goto-kakizaki rats: metabolomics analysis in serum and urine[J]. J Agric Food Chem, 2021, 69(2): 783-793. DOI: 10.1021/acs.jafc.0c06445.
- 13. Wang Y, Zhang Y, Chen K, et al. Insufficient S-adenosylhomocysteine hydrolase compromises the beneficial effect of diabetic BMSCs on diabetic cardiomyopathy[J/OL]. Stem Cell Res Ther, 2022, 13(1): 418[2022-08-13]. https://pubmed.ncbi.nlm.nih.gov/35964109/. DOI: 10.1186/s13287-022-03099-1.
- 14. Lu L, Ning Y, Gu F, et al. The circular RNA circSLC16A10 alleviates diabetic retinopathy by improving mitochondrial function via the miR-761-5p/MFN2 axis[J/OL]. Cell Signal, 2024, 121: 111283[2024-07-02]. https://pubmed.ncbi.nlm.nih.gov/38960059/. DOI: 10.1016/j.cellsig.2024.111283.
- 15. Kasai S, Shimizu S, Tatara Y, et al. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology[J/OL]. Biomolecules, 2020, 10(2): 320[2020-05-17]. https://pubmed.ncbi.nlm.nih.gov/32079324/. DOI: 10.3390/biom10020320.
- 16. Kowluru RA, Mohammad G. Mitochondrial fragmentation in a high homocysteine environment in diabetic retinopathy[J/OL]. Antioxidants (Basel), 2022, 11(2): 365[2022-02-11]. https://pubmed.ncbi.nlm.nih.gov/35204246/. DOI: 10.3390/antiox11020365.
- 17. Choi SW, Friso S. Modulation of DNA methylation by one-carbon metabolism: a milestone for healthy aging[J]. Nutr Res Pract, 2023, 17(4): 597-615. DOI: 10.4162/nrp.2023.17.4.597.
- 18. Mohammad G, Kowluru RA. Homocysteine disrupts balance between MMP-9 and its tissue inhibitor in diabetic retinopathy: the role of DNA methylation[J/OL]. Int J Mol Sci, 2020, 21(5): 1771[2020-03-05]. https://pubmed.ncbi.nlm.nih.gov/32150828/. DOI: 10.3390/ijms21051771.
- 19. Zhou B, Zhang JY, Liu XS, et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis[J]. Cell Res, 2018, 28(12): 1171-1185. DOI: 10.1038/s41422-018-0090-y.
- 20. Murdolo G, Bartolini D, Tortoioli C, et al. Accumulation of 4-hydroxynonenal characterizes diabetic fat and modulates adipogenic differentiation of adipose precursor cells[J/OL]. Int J Mol Sci, 2023, 24(23): 16645[2023-11-23]. https://pubmed.ncbi.nlm.nih.gov/38068967/. DOI: 10.3390/ijms242316645.
- 21. Kowluru RA. Retinopathy in a diet-induced type 2 diabetic rat model and role of epigenetic modifications[J]. Diabetes, 2020, 69(4): 689-698. DOI: 10.2337/db19-1009.
- 22. Yang HQ, Martinez-Ortiz W, Hwang J, et al. Palmitoylation of the KATP channel Kir6.2 subunit promotes channel opening by regulating PIP2 sensitivity[J]. Proc Natl Acad Sci USA, 2020, 117(19): 10593-10602. DOI: 10.1073/pnas.1918088117.
- 23. Long Q, Chen H, Yang W, et al. Delphinidin-3-sambubioside from Hibiscus sabdariffa. L attenuates hyperlipidemia in high fat diet-induced obese rats and oleic acid-induced steatosis in HepG2 cells[J]. Bioengineered, 2021, 12(1): 3837-3849. DOI: 10.1080/21655979.2021.1950259.
- 24. Cai C, Gu C, He S, et al. TET2-mediated ECM1 hypomethylation promotes the neovascularization in active proliferative diabetic retinopathy[J]. Clin Epigenetics, 2024, 16(1): 6. DOI: 10.1186/s13148-023-01619-1.
- 25. Maugeri A, Mazzone MG, Giuliano F, et al. Curcumin modulates DNA methyltransferase functions in a cellular model of diabetic retinopathy[J/OL]. Oxid Med Cell Longev, 2018, 2018: 5407482[2018-07-02]. https://pubmed.ncbi.nlm.nih.gov/30057682/. DOI: 10.1155/2018/5407482.
- 26. Zhang QA, Luo WS, Li J, et al. Integrative analysis of acupuncture targets and immune genes in diabetes, diabetic peripheral neuropathy, and adjunct therapy of cancer[J]. J Multidiscip Healthc, 2024, 17: 4939-4962. DOI: 10.2147/JMDH.S483940.
- 27. Malaviya P, Kowluru RA. Diabetic retinopathy and regulation of mitochondrial glutathione-glutathione peroxidase axis in hyperhomocysteinemia[J/OL]. Antioxidants (Basel), 2024, 13(3): 254[2024-02-20]. https://pubmed.ncbi.nlm.nih.gov/38539790/. DOI: 10.3390/antiox13030254.
- 28. Zhang SM, Fan B, Li YL, et al. Oxidative stress-involved mitophagy of retinal pigment epithelium and retinal degenerative diseases[J]. Cell Mol Neurobiol, 2023, 43(7): 3265-3276. DOI: 10.1007/s10571-023-01383-z.
- 29. Choi EH, Park SJ. TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target[J]. Exp Mol Med, 2023, 55(7): 1348-1356. DOI: 10.1038/s12276-023-01019-8.
- 30. Xian H, Karin M. Oxidized mitochondrial DNA: a protective signal gone awry[J]. Trends Immunol, 2023, 44(3): 188-200. DOI: 10.1016/j.it.2023.01.006.
- 31. Bögel G, Sváb G, Murányi J, et al. The role of PI3K-Akt-mTOR axis in Warburg effect and its modification by specific protein kinase inhibitors in human and rat inflammatory macrophAGE[J/OL]. Int Immunopharmacol, 2024, 141: 112957[2024-11-15]. https://pubmed.ncbi.nlm.nih.gov/39197292/. DOI: 10.1016/j.intimp.2024.112957.
- 32. Fan S, Tian T, Chen W, et al. Mitochondrial miRNA determines chemoresistance by reprogramming metabolism and regulating mitochondrial transcription[J]. Cancer Res, 2019, 79(6): 1069-1084. DOI: 10.1158/0008-5472.CAN-18-2505.
- 33. Duan LJ, Jiang Y, Fong GH. Endothelial HIF2α suppresses retinal angiogenesis in neonatal mice by upregulating NOTCH signaling[J/OL]. Development, 2024, 151(11): dev202802[2024-06-01]. https://pubmed.ncbi.nlm.nih.gov/38770916/. DOI: 10.1242/dev.202802.
- 34. Liu S, Zhang X, Yao X, et al. Mammalian IRE1α dynamically and functionally coalesces with stress granules[J]. Nat Cell Biol, 2024, 26(6): 917-931. DOI: 10.1038/s41556-024-01418-7.
- 35. Huang YP, Huang WW, Tsai KF, et al. CDN1163, a SERCA activator, causes intracellular Ca2+ leak, mitochondrial hyperpolarization and cell cycle arrest in mouse neuronal N2A cells[J]. Neurotoxicology, 2023, 98: 9-15. DOI: 10.1016/j.neuro.2023.07.001.
- 36. Kunze R, Fischer S, Marti HH, et al. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration[J/OL]. J Biomed Sci, 2023, 30(1): 64[2023-08-07]. https://pubmed.ncbi.nlm.nih.gov/37550658/. DOI: 10.1186/s12929-023-00954-y.
- 37. Joe YE, Jun JH, Oh JE, et al. Damage-associated molecular patterns as a mechanism of sevoflurane-induced neuroinflammation in neonatal rodents[J]. Korean J Anesthesiol, 2024, 77(4): 468-479. DOI: 10.4097/kja.23796.
- 38. Filipowicz A, Allard P. Caenorhabditis elegans as a model for environmental epigenetics[J]. Curr Environ Health Rep, 2025, 12(1): 6. DOI: 10.1007/s40572-025-00472-z.
- 39. Wu J, Liu LL, Cao M, et al. DNA methylation plays important roles in retinal development and diseases[J/OL]. Exp Eye Res, 2021, 211: 108733[2021-08-18]. https://pubmed.ncbi.nlm.nih.gov/34418429/. DOI: 10.1016/j.exer.2021.108733.
- 40. Mohammad G, Kowluru RA. Mitochondrial dynamics in the metabolic memory of diabetic retinopathy[J/OL]. J Diabetes Res, 2022, 2022: 3555889[2022-03-31]. https://pubmed.ncbi.nlm.nih.gov/35399705/. DOI: 10.1155/2022/3555889.
- 41. Sadeghi E, Rahmanipour E, Valsecchi N, et al. An update on ocular effects of antidiabetic medications[J]. Surv Ophthalmol, 2025, 70(4): 704-712. DOI: 10.1016/j.survophthal.2025.01.010.
- 42. Mishra M, Kowluru RA. DNA methylation-a potential source of mitochondria DNA base mismatch in the development of diabetic retinopathy[J]. Mol Neurobiol, 2019, 56(1): 88-101. DOI: 10.1007/s12035-018-1086-9.
- 43. Wang X, Zhang Z, Ge YQ, et al. The effect of calcium dobesilate combined with hypoglycemic drugs in the treatment of cataract NPDR and its effect on fundus microcirculation and blood ICAM-1, MCP-1 and MIF levels[J]. J Med Biochem, 2023, 42(4): 591-599. DOI: 10.5937/jomb0-37338.
- 44. Liu J, Li S, Sun D. Calcium dobesilate and micro-vascular diseases[J]. Life Sci, 2019, 221: 348-353. DOI: 10.1016/j.lfs.2019.02.023.
- 45. Shi W, Xu G, Gao Y, et al. Novel role for epalrestat: protecting against NLRP3 inflammasome-driven NASH by targeting aldose reductase[J/OL]. J Transl Med, 2023, 21(1): 700[2023-10-07]. https://pubmed.ncbi.nlm.nih.gov/37805545/. DOI: 10.1186/s12967-023-04380-4.
- 46. Sun Z, Wen P, Yang D, et al. Idebenone improves mitochondrial respiratory activity and attenuates oxidative damage via the SIRT3-SOD2 pathway in a prion disease cell model[J/OL]. Life Sci, 2025, 366-367: 123481[2025-04-01]. https://pubmed.ncbi.nlm.nih.gov/39983818/. DOI: 10.1016/j.lfs.2025.123481.
- 47. Suzuki K, Rao A, Onodera A. The TET-TDG axis in T cells and biological processes[J]. Int Immunol, 2025, 37(6): 299-312. DOI: 10.1093/intimm/dxaf006.
- 48. Pavlovic V, Ciric M, Petkovic M, et al. Vitamin C and epigenetics: a short physiological overview[J/OL]. Open Med (Wars), 2023, 18(1): 20230688[2023-06-22]. https://pubmed.ncbi.nlm.nih.gov/37359134/. DOI: 10.1515/med-2023-0688.
- 49. Dhat R, Mongad D, Raji S, et al. Epigenetic modifier alpha-ketoglutarate modulates aberrant gene body methylation and hydroxymethylation marks in diabetic heart[J/OL]. Epigenetics Chromatin, 2023, 16(1): 12[2023-04-27]. https://pubmed.ncbi.nlm.nih.gov/37101286/. DOI: 10.1186/s13072-023-00489-4.
- 50. Morita S, Horii T, Kimura M, et al. Synergistic upregulation of target genes by TET1 and VP64 in the dCas9-SunTag platform[J/OL]. Int J Mol Sci, 2020, 21(5): 1574[2020-02-25]. https://pubmed.ncbi.nlm.nih.gov/32106616/. DOI: 10.3390/ijms21051574.
- 51. Yano N, Fedulov AV. Targeted DNA demethylation: vectors, effectors and perspectives[J/OL]. Biomedicines, 2023, 11(5): 1334[2023-04-30]. https://pubmed.ncbi.nlm.nih.gov/37239005/. DOI: 10.3390/biomedicines11051334.
- 52. Bahardoust M, Mehrabi Y, Hadaegh F, et al. Impact of duration of treatments with metformin and sulfonylureas, individually or in combination, on diabetic retinopathy among newly diagnosed type 2 diabetic patients: a pooled cohort's analysis[J/OL]. Int J Retina Vitreous, 2025, 11(1): 9[2025-04-12]. https://pubmed.ncbi.nlm.nih.gov/39891223/. DOI: 10.1186/s40942-025-00637-w.
- 53. Wu Y, Zou H. Research progress on mitochondrial dysfunction in diabetic retinopathy[J/OL]. Antioxidants (Basel), 2022, 11(11): 2250[2022-11-15]. https://pubmed.ncbi.nlm.nih.gov/36421435/. DOI: 10.3390/antiox11112250.
- 54. Tang K, Qin W, Wei R, et al. Ginsenoside Rd ameliorates high glucose-induced retinal endothelial injury through AMPK-STRT1 interdependence[J/OL]. Pharmacol Res, 2022, 179: 106123[2022-02-09]. https://pubmed.ncbi.nlm.nih.gov/35150861/. DOI: 10.1016/j.phrs.2022.106123.
- 55. Duraisamy AJ, Radhakrishnan R, Seyoum B, et al. Epigenetic modifications in peripheral blood as potential noninvasive biomarker of diabetic retinopathy[J/OL]. Transl Vis Sci Technol, 2019, 8(6): 43[2019-12-18]. https://pubmed.ncbi.nlm.nih.gov/31871829/. DOI: 10.1167/tvst.8.6.43.
- 56. Cao K, Lv W, Wang X, et al. Hypermethylation of hepatic mitochondrial ND6 provokes systemic insulin resistance[J/OL]. Adv Sci (Weinh), 2021, 8(11): 2004507[2021-05-02]. https://pubmed.ncbi.nlm.nih.gov/34141522/. DOI: 10.1002/advs.202004507.
- 57. Kowluru RA, Kumar J, Malaviya P. DNA methylation of long noncoding RNA cytochrome B in diabetic retinopathy[J]. Noncoding RNA Res, 2025, 11: 141-149. DOI: 10.1016/j.ncrna.2024.12.007.
- 58. Constâncio V, Nunes SP, Henrique R, et al. DNA methylation-based testing in liquid biopsies as detection and prognostic biomarkers for the four major cancer types[J/OL]. Cells, 2020, 9(3): 624[2020-03-05]. https://pubmed.ncbi.nlm.nih.gov/32150897/. DOI: 10.3390/cells9030624.