1. |
Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. DOI: 10.1016/j.ophtha.2021.04.027.
|
2. |
Hammes HP. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond[J]. Diabetologia, 2018, 61(1): 29-38. DOI: 10.1007/s00125-017-4435-8.
|
3. |
Soni D, Sagar P, Takkar B. Diabetic retinal neurodegeneration as a form of diabetic retinopathy[J]. Int Ophthalmol, 2021, 41(9): 3223-3248. DOI: 10.1007/s10792-021-01864-4.
|
4. |
Hombrebueno JR, Cairns L, Dutton LR, et al. Uncoupled turnover disrupts mitochondrial quality control in diabetic retinopathy[J/OL]. JCI insight, 2019, 4(23): e129760[2019-12-05]. https://pubmed.ncbi.nlm.nih.gov/31661466/. DOI: 10.1172/jci.insight.129760.
|
5. |
Kowluru RA, Mohammad G. Mitochondrial fragmentation in a high homocysteine environment in diabetic retinopathy[J/OL]. Antioxidants (Basel), 2022, 11(2): 365[2022-02-11]. https://pubmed.ncbi.nlm.nih.gov/35204246/. DOI: 10.3390/antiox11020365.
|
6. |
Kowluru RA, Alka K. Mitochondrial quality control and metabolic memory phenomenon associated with continued progression of diabetic retinopathy[J/OL]. Int J Mol Sci, 2023, 24(9): 8076[2023-04-29]. https://pubmed.ncbi.nlm.nih.gov/37175784/. DOI: 10.3390/ijms24098076.
|
7. |
Lam CH, Cheung JK, Tse DY, et al. Proteomic profiling revealed mitochondrial dysfunction in photoreceptor cells under hyperglycemia[J/OL]. Int J Mol Sci, 2022, 23(21): 13366[2022-11-01]. https://pubmed.ncbi.nlm.nih.gov/36362154/. DOI: 10.3390/ijms232113366.
|
8. |
Lam CH, Zou B, Chan HH, et al. Functional and structural changes in the neuroretina are accompanied by mitochondrial dysfunction in a type 2 diabetic mouse model[J/OL]. Eye Vis (Lond), 2023, 10(1): 37[2023-09-01]. https://pubmed.ncbi.nlm.nih.gov/37653465/. DOI: 10.1186/s40662-023-00353-2.
|
9. |
Palmer AK, Gustafson B, Kirkland JL, et al. Cellular senescence: at the nexus between ageing and diabetes[J]. Diabetologia, 2019, 62(10): 1835-1841. DOI: 10.1007/s00125-019-4934-x.
|
10. |
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets--update[J]. Nucleic Acids Res, 2013, 41(Database issue): 991-995. DOI: 10.1093/nar/gks1193.
|
11. |
Govindarajan G, Mathews S, Srinivasan K, et al. Establishment of human retinal mitoscriptome gene expression signature for diabetic retinopathy using cadaver eyes[J]. Mitochondrion, 2017, 36: 150-181. DOI: 10.1016/j.mito.2017.07.007.
|
12. |
Ishikawa K, Yoshida S, Kobayashi Y, et al. Microarray analysis of gene expression in fibrovascular membranes excised from patients with proliferative diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 932-946. DOI: 10.1167/iovs.14-15589.
|
13. |
Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J/OL]. Nucleic Acids Res, 2015, 43(7): e47[2015-04-20]. https://pubmed.ncbi.nlm.nih.gov/25605792/. DOI: 10.1093/nar/gkv007.
|
14. |
Ben Salem K, Ben Abdelaziz A. Principal component analysis (PCA)[J]. Tunis Med, 2021, 99(4): 383-389.
|
15. |
Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1-33. DOI: 10.1002/cpbi.5.
|
16. |
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47(D1): 607-613. DOI: 10.1093/nar/gky1131.
|
17. |
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11): 2498-2504. DOI: 10.1101/gr.1239303.
|
18. |
Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome[J/OL]. BMC Syst Biol, 2014, 8(Suppl 4): S11[2014-12-08]. https://pubmed.ncbi.nlm.nih.gov/25521941/. DOI: 10.1186/1752-0509-8-S4-S11.
|
19. |
Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Res, 2014, 42(Database issue): 92-97. DOI: 10.1093/nar/gkt1248.
|
20. |
Zhang Q, Liu W, Zhang HM, et al. hTFtarget: a comprehensive database for regulations of human transcription factors and their targets[J]. Genomics Proteomics Bioinformatics, 2020, 18(2): 120-128. DOI: 10.1016/j.gpb.2019.09.006.
|
21. |
Nawaz IM, Rezzola S, Cancarini A, et al. Human vitreous in proliferative diabetic retinopathy: characterization and translational implications[J/OL]. Prog Retin Eye Res, 2019, 72: 100756[2019-04-02]. https://pubmed.ncbi.nlm.nih.gov/30951889/. DOI: 10.1016/j.preteyeres.2019.03.002.
|
22. |
Tang H, Luo N, Zhang X, et al. Association between biological aging and diabetic retinopathy[J/OL]. Sci Rep, 2024, 14(1): 10123[2024-05-02]. https://pubmed.ncbi.nlm.nih.gov/38698194/. DOI: 10.1038/s41598-024-60913-x.
|
23. |
Mortuza R, Chen S, Feng B, et al. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway[J/OL]. PLoS One, 2013, 8(1): e54514[2013-01-16]. https://pubmed.ncbi.nlm.nih.gov/23342163/. DOI: 10.1371/journal.pone.0054514.
|
24. |
Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy[J/OL]. Exp Diabetes Res, 2007, 2007: 95103[2007-10-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC2216058/. DOI: 10.1155/2007/95103.
|
25. |
Caspi RR. Ocular autoimmunity: the price of privilege?[J]. Immunol Rev, 2006, 213: 23-35. DOI: 10.1111/j.1600-065X.2006.00439.x.
|
26. |
Chen M, Luo C, Zhao J, et al. Immune regulation in the aging retina[J]. Prog Retin Eye Res, 2019, 69: 159-172. DOI: 10.1016/j.preteyeres.2018.10.003.
|
27. |
Xi J, Rong Y, Zhao Z, et al. Scutellarin ameliorates high glucose-induced vascular endothelial cells injury by activating PINK1/Parkin-mediated mitophagy[J/OL]. J Ethnopharmacol, 2021, 271: 113855[2021-05-10]. https://pubmed.ncbi.nlm.nih.gov/33485979/. DOI: 10.1016/j.jep.2021.113855.
|
28. |
Yoo YA, Kim MJ, Park JK, et al. Mitochondrial ribosomal protein L41 suppresses cell growth in association with p53 and p27Kip1[J]. Mol Cell Biol, 2005, 25(15): 6603-6616. DOI: 10.1128/MCB.25.15.6603-6616.2005.
|
29. |
Conde JA, Claunch CJ, Romo HE, et al. Identification of a motif in BMRP required for interaction with Bcl-2 by site-directed mutagenesis studies[J]. J Cell Biochem, 2012, 113(11): 3498-508. DOI: 10.1002/jcb.24226.
|
30. |
Chintharlapalli SR, Jasti M, Malladi S, et al. BMRP is a Bcl-2 binding protein that induces apoptosis[J]. J Cell Biochem, 2005, 94(3): 611-626. DOI: 10.1002/jcb.20292.
|
31. |
Subramanian A, Kuehn H, Gould J, et al. GSEA-P: a desktop application for gene set enrichment analysis[J]. Bioinformatics, 2007, 23(23): 3251-3253. DOI: 10.1093/bioinformatics/btm369.
|
32. |
You J, Qi S, Du Y, et al. Multiple bioinformatics analyses of integrated gene expression profiling data and verification of hub genes associated with diabetic retinopathy[J/OL]. Med Sci Monit, 2020, 26: e923146[2020-04-15]. https://pubmed.ncbi.nlm.nih.gov/32294661/. DOI: 10.12659/MSM.923146.
|
33. |
Liu J, Yang J. Mitochondria-associated membranes: a hub for neurodegenerative diseases[J/OL]. Biomed Pharmacother, 2022, 149: 112890[2022-03-31]. https://pubmed.ncbi.nlm.nih.gov/35367757/. DOI: 10.1016/j.biopha.2022.112890.
|
34. |
Zhang XY, Han C, Yao Y, et al. Current insights on mitochondria-associated endoplasmic reticulum membranes (MAMs) and their significance in the pathophysiology of ocular disorders[J/OL]. Exp Eye Res, 2024, 248: 110110[2024-09-24]. https://pubmed.ncbi.nlm.nih.gov/39326773/. DOI: 10.1016/j.exer.2024.110110.
|
35. |
Forini F, Nicolini G, Amato R, et al. Local modulation of thyroid hormone signaling in the retina affects the development of diabetic retinopathy[J/OL]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(1): 166892[2023-09-25]. https://pubmed.ncbi.nlm.nih.gov/37758065/. DOI: 10.1016/j.bbadis.2023.166892.
|
36. |
Yamakawa N, Komatsu H, Usui Y, et al. Immune mediators profiles in the aqueous humor of patients with simple diabetic retinopathy[J/OL]. J Clin Med, 2023, 12(21): 6931[2023-11-05]. https://pubmed.ncbi.nlm.nih.gov/37959396/. DOI: 10.3390/jcm12216931.
|
37. |
Xu H, Chen M. Diabetic retinopathy and dysregulated innate immunity[J]. Vision Res, 2017, 139: 39-46. DOI: 10.1016/j.visres.2017.04.013.
|
38. |
Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy[J/OL]. Front Immunol, 2020, 11: 564077[2020-11-06]. https://pubmed.ncbi.nlm.nih.gov/33240260/. DOI: 10.3389/fimmu.2020.564077.
|
39. |
Wu H, Wang M, Li X, et al. The metaflammatory and immunometabolic role of macrophages and microglia in diabetic retinopathy[J/OL]. Hum Cell, 2021, 34(6): 1617-1628. DOI: 10.1007/s13577-021-00580-6.
|